Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)
Ta thấy:
\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)
\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)
\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)
\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)
\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)
các bạn giúp mình nhé, người làm nhanh và đúng sẽ được mình k nhé
Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64
A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)
Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2
1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2
1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2
Vậy A > 4
bạn xét :1/2+1/3+1/4>1
vậy 1/5+1/6+1/7+1/8...>1
vậy nó >2
cách khác.
tính S62=31*[2*1/2-(62-1)*(-1/6)]>2
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
\(>\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)\)
\(>\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+...+\frac{1}{8}\right)+\left(\frac{1}{16}+...+\frac{1}{16}\right)\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)