K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2015

Bạn có thể vào đây tham khảo Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Nhấn vào dòng chữ màu xanh 

29 tháng 11 2015

S = \(\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{1992}{2^{1991}}\)

2.S = \(2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{1992}{2^{1990}}\)

=> 2.S - S = \(2+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}\)

=> S = \(2-\frac{1992}{2^{1991}}+\left(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\right)\)

Đặt A = \(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\)

=>2.A = 2 + \(\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{1989}}\)

=> 2.A - A = 2 - \(\frac{1}{2^{1990}}\)=A

Vậy S = \(4-\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}<4\)

 

 

30 tháng 11 2015

tic cho tuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 tháng 9 2016

giúp mình với

Nhanh mình tick cho

 

5 tháng 9 2018

k đúng đi rồi làm cho

27 tháng 11 2016

Ta có: Các số hạng của A đều bé hơn 1/3 nên A<1/3

          

27 tháng 11 2016

Cách này đúng rồi nhưng chưa chắc thầy sẽ chịu. Mình có cách khác là lấy A nhân với 2 rồi trừ đi A.

2 tháng 2 2019

a) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}-\frac{3}{7}:x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}-\frac{3}{7}:x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)

Vậy \(x\in\left\{\frac{2}{3};\frac{6}{7}\right\}\)

b) 

 \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

        \(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+329}{5}+4=4\)

         \(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

          \(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Mà \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)

\(\Rightarrow x+329=0\)

\(\Rightarrow x=-329\)

Vậy \(x=-329\)