K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

x2 + 4x + 7 = ( x2 + 4x + 4 ) + 3 = ( x + 2 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

-x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

-4x2 - 4x - 2 = -4( x2 + x + 1/4 ) - 1 = -4( x + 1/2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)

5 tháng 6 2020

C1: nghiệm của phương trình 2x+6=1 là:

A. x =-2,5

B. x =2,5

C. x=3,5

D. x=-3,5

C2:Tập nghiệm của phương trình 2x̣̣(x-3)=0

A. S={0}{0}

B. S = {0; 3}

C. S={3}{3}

D. S=∅

C3: Tập nghiệm của phương trình \(\frac{3x-2}{2}=x\)3x−22=x là:

A. S = {2}

B. S={2}{−2}

C. S=∅

D. S=[1][1]

C4:Tập nghiệm của phương trình x2-16 =0

A. S={16}{16}

B. S={4}{4}

C. S={4}{−4}

D. S = {-4; 4}

C5: Bất phương trình 2x-3>0. Có nghiệm là:

A. x>1

B. x>1,5

C. xB. x>-1,5

D. x<1,5

C6:Bất phương trình 5x<2x-3 Có nghiệm là:

A. x <-1

B. x > 1

C. x >-0,5

D. x <0,5

17 tháng 9 2016

3x2+5y2-4xy-4x+4y+7>0

<=>\(x^2+4y^2-4xy-4x^2-4x+1+2x^2+y^2+4y+4+2>0\)

<=>\(\left(x-2y\right)^2-\left(2x-1\right)^2+\left(y+2\right)^2+2x^2+2>0\)

NV
23 tháng 5 2019

Câu 1:

\(4x^2+8xy+28x+28y+8y^2+40=0\)

\(\Leftrightarrow\left(2x+2y+7\right)^2+4y^2-9=0\)

\(\Leftrightarrow\left(2x+2y+7\right)^2=9-4y^2\le9\)

\(\Rightarrow-3\le2x+2y+7\le3\)

\(\Leftrightarrow-8\le2y+2y+2\le-2\)

\(\Rightarrow-4\le x+y+1\le-1\)

\(\Rightarrow S_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

\(S_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

Câu 2:

\(x^2+y^2=6xy\Rightarrow\frac{x}{y}+\frac{y}{x}=6\)

Đặt \(\frac{x}{y}=a>1\Rightarrow a+\frac{1}{a}=6\Rightarrow a^2-6a+1=0\Rightarrow a=3+2\sqrt{2}\)

\(\Rightarrow P=\frac{x+y}{x-y}=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{a+1}{a-1}=\frac{3+2\sqrt{2}+1}{3+2\sqrt{2}-1}=\sqrt{2}\)

8 tháng 4 2019

a. * \(\left|x+2\right|=x+2\) nếu \(x+2\ge0\Leftrightarrow x\ge-2\)

\(\left|x+2\right|=-x-2\) nếu \(x+2< 0\Leftrightarrow x< -2\)

* TH1: \(x+2=2x-10\Leftrightarrow x-2x=-10-2\)

\(\Leftrightarrow-x=-12\Leftrightarrow x=12\left(tm\right)\)

TH2: \(-x-2=2x-10\Leftrightarrow-x-2x=-10+2\)

\(\Leftrightarrow-3x=-8\Leftrightarrow x=\frac{8}{3}\left(ktm\right)\)

Vậy, \(S=\left\{12\right\}\)

b. * \(\left|-5x\right|=-5x\) nếu \(-5x\ge0\Leftrightarrow x\le0\)

\(\left|-5x\right|=5x\) nếu \(-5x< 0\Leftrightarrow x>0\)

* TH1: \(-5x+1=3x-9\Leftrightarrow-5x-3x=-9-1\)

\(\Leftrightarrow-8x=-10\Leftrightarrow x=\frac{5}{4}\left(ktm\right)\)

TH2: \(5x+1=3x-9\Leftrightarrow5x-3x=-9-1\)

\(\Leftrightarrow2x=-10\Leftrightarrow x=-5\left(ktm\right)\)

Vậy, \(S=\left\{\varnothing\right\}\)

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)