K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2019

\(sin^4x=\left(sin^2x\right)^2=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}cos4x\right)=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)

\(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=\frac{\left(cosa.cosb-sina.sinb\right)\left(cosa.cosb+sina.sinb\right)}{cos^2a.cos^2b}\)

\(=\frac{cos^2a.cos^2b-sin^2a.sin^2b}{cos^2a.cos^2b}=1-\frac{sin^2a.sin^2b}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)

NV
14 tháng 4 2019

a/

\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)

b/

\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)

c/

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)

\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)

d/

\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)

e/

\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)

Các câu c, e đều sử dụng kết quả từ câu b

NV
14 tháng 4 2019

f/

\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)

\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)

\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)

\(=2.\left(-2sin^2x\right)^2=8sin^4x\)

g/

\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)

h/

\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

i/

\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

j/

\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

NV
20 tháng 5 2020

a/ \(\frac{A}{2}+\left(\frac{B}{2}+\frac{C}{2}\right)=90^0\)

\(\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}.sin\frac{C}{2}\)

b/ \(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=\frac{\left(tanA-tanB\right)}{\left(1+tanA.tanB\right)}.\frac{\left(tanA+tanB\right)}{\left(1-tanA.tanB\right)}=tan\left(A-B\right).tan\left(A+B\right)\)

\(=tan\left(A-B\right).tan\left(180^0-C\right)=-tan\left(A-B\right).tanC\)

c/

\(A+B+C=180^0\Rightarrow cot\left(A+B\right)=-cotC\)

\(\Leftrightarrow\frac{cotA.cotB-1}{cotA+cotB}=-cotC\)

\(\Leftrightarrow cotA.cotB-1=-cotA.cotC-cotB.cotC\)

\(\Leftrightarrow cotA.cotB+cotB.cotC+cotA.cotC=1\)

26 tháng 8 2021

Tại sao lại suy đc Tại sao lại suy đc c


⇔cotA.cotB−1cotA+cotB=−cotC

⇔cotA.cotB−1=−cotA.cotC−cotB.cotC ạ⇔cotA.cotB−1=−cotA.cotC−cotB.cotC


⇔cotA.cotB+cotB.cotC+cotA

NV
28 tháng 4 2020

Mẫn Li

Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)

Câu 2b sửa lại thì cm dễ thôi:

\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)

\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)

\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)

\(=cot^2a.cot^2b-1\)

(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))

28 tháng 4 2020

Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:

\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)

Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!

NV
21 tháng 5 2020

\(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cosa.cosb+sina.sinb}{sina.cosb+cosa.sinb}=\frac{\frac{cosa.cosb}{sina.sinb}+1}{\frac{sina.cosb}{sina.sinb}+\frac{cosa.sinb}{sina.sinb}}=\frac{cota.cotb+1}{cota+cotb}\)

Bạn ghi đề ko đúng

\(sin\left(a+b\right)sin\left(a-b\right)=\frac{1}{2}\left[cos2b-cos2a\right]\)

\(=\frac{1}{2}\left[1-2sin^2b-1+2sin^2a\right]\)

\(=sin^2a-sin^2b\)

\(=1-cos^2a-1+cos^2b=cos^2b-cos^2a\)

Câu này bạn cũng ghi đề ko đúng

\(cos\left(a+b\right)cos\left(a-b\right)=\frac{1}{2}\left[cos2a+cos2b\right]\)

\(=\frac{1}{2}\left[2cos^2a-1+1-2sin^2b\right]=cos^2a-sin^2b\)

\(=1-sin^2a-1+cos^2b=cos^2b-sin^2a\)

NV
7 tháng 5 2019

\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)

\(=sinx+cosx-cosx=sinx\)

\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)

\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)

7 tháng 5 2019

Cho em ngay dòng đầu tiên của câu b ấy ạ, tại sao tách ra thế dược ạ ?

NV
30 tháng 4 2019

\(cosx.cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)=\frac{1}{2}cosx\left(cos\frac{2\pi}{3}+cos2x\right)=-\frac{1}{4}cosx+\frac{1}{2}cosx.cos2x\)

\(=-\frac{1}{4}cosx+\frac{1}{4}\left(cos3x+cosx\right)=\frac{1}{4}cos3x\)

\(sin5x-2sinx\left(cos4x+cos2x\right)=sinx.cos4x+cosx.sin4x-2sinx.cos4x-2sinx.cos2x\)

\(=sin4x.cosx-cos4x.sinx-2sinx.cos2x=sin3x-2sinx.cos2x\)

\(=sinx.cos2x+cosx.sin2x-2sinx.cos2x\)

\(=sin2x.cosx-cos2x.sinx=sinx\)

20 tháng 6 2020

a, \(\frac{sin2a+cosa}{2sina+1}=\frac{2sinacosa+cóa}{2sina+1}\)= \(\frac{cosa\left(2sina+1\right)}{2sina+1}\)= cos a (đpcm)

b, P= \(\frac{\left(sin^2x-cos^2x\right)\left(sin^2+cos^2x\right).\left(sin^2+2sinx.cosx+cos^2x-1\right)}{1+2cos2x-1}\)

= \(\frac{\left(sin^2x-cos^2x\right).2sinx.cosx}{2cos2x}\)

= \(\frac{-cos2x.sin2x}{2.cos2x}\)= -1/2 sin 2x

#mã mã#

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

a)

\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)

b)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)

c)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)

\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)