K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Ta có: \(x^5+x+1=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

Lại có: \(x^5+x+1=0\)

\(\Rightarrow\left(x^2+x+1\right)\left(x^3-x^2+1\right)=0\)

\(\Rightarrow x^3-x^2+1=0\)  (vì \(x^2+x+1>0\))

Đặt \(m=\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)

\(\Rightarrow m^3=25+3\sqrt[3]{\frac{25+\sqrt{621}}{2}.\frac{25-\sqrt{621}}{2}}.m\)

\(m^3=25+3m\) (1)

\(n=\frac{1}{3}\left(1-m\right)\Leftrightarrow m=1-3n\) (2)

Từ (1) và (2) suy ra:

\(\left(1-n\right)^3=25+\left(1-3n\right)\)

\(\Leftrightarrow1-9n+27n^2-27n^3=25+3-9n\)

\(\Leftrightarrow27n^3-27n^2+27=0\)

\(\Leftrightarrow n^3-n^2+1=0\)

Vậy \(x=n\)  là nghiệm của phương trình \(x^3-x^2+1=0\)

\(\Rightarrow x=n\) cũng là nghiệm của phương trình \(x^5+x+1=0\)

* Nếu \(x>n\)  thì \(x^5+x+1>n^5+n+1=0\)

\(\Rightarrow\) Với mọi x > n  ko là nghiệm của phương trình.

* Nếu \(x< n\)  thì \(x^5+x+1< n^5+n+1=0\)

\(\Rightarrow\)  Với mọi x < n  ko là nghiệm của phương trình.

(Chúc bạn học giỏi và tíck cho mìk vs nhoa!)

29 tháng 8 2016

ta có \(3x=1-\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)

<=> \(1-3x=\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)

<=> \(\left(1-3x\right)^3=\left(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\right)^3\)

<=> \(1-9x+27x^2-27x^3=\frac{25+\sqrt{621}}{2}+\frac{25-\sqrt{621}}{2}+3\left(\frac{25+\sqrt{621}}{2}\cdot\frac{25-\sqrt{621}}{2}\right)\left(1-3x\right)\)( vì  \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}=1-3x\)....phía trên 2 dòng )

<=> \(1-9x+27x^2-27x^3=25+3\cdot1\cdot\left(1-3x\right)\)

<=> \(1-9x+27x^2-27x^3=25+3-9x\)

<=> \(1-9x+27x^2-27x^3=28-9x\)

<=> \(27x^3-27x^2+27=0\)

<=.\(27\left(x^3-x^2+1\right)=0\)

<=. \(x^3-x^2+1=0\)

pt \(x^3-x^2+1=0\) và pt \(x^5+x+1=0\) đều có nghiệm chung 

vậy đccm

29 tháng 8 2016

Bài của phan tuấn anh nên bổ sung

\(x^5+x+1=\left(x^3-x^2+1\right)\left(x^2+x+1\right)=\left(x^3-x^2+1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2

12 tháng 9 2018

đề sai bạn ơi, nhỡ may x=y=z=0 thì sao

12 tháng 9 2018

ừ nhỉ phải là x3+y3+z3=1 bạn ạ

2 tháng 8 2020

em mới lớp 6-7 nên em sẽ giải theo kiểu lớp 6 là

2 tháng 8 2020

em ko biết giải khó quá trời