Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(=\dfrac{3}{7}\cdot\dfrac{13}{8}-\dfrac{3}{7}\cdot\dfrac{7}{9}-\dfrac{13}{8}\cdot\dfrac{3}{7}+\dfrac{13}{8}\cdot\dfrac{8}{39}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}=0\)
b: \(=\dfrac{1989\left(1990+2\right)}{1992\left(1991-2\right)}=1\)
gọi ƯCLN (2n+3;4n+8) là d
=> 2n+3 chia het cho d ; 4n+8 chia hết cho d
=>2(2n+3) chia hết cho d
hay 4n+6 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
2 chia hết cho d
=> d thuộc {1;2}
*) xét d=2 thì 2n+3 chia hết cho 2
mà 2n chia hết cho 2 nhưng 3 không chia hết cho 2
=>d khác 2
=> d =1
vậy phân số 2n+3/4n+8 là phân số tối giản với mọi n thuôc N
gọi d là UCLN(2n+3;4n+8)
ta có:
4n+8-2(2n+3) chia hết d
=>4n+8-4n+3 chia hết cho d
=>2 chia hết cho d
=>d thuộc {1,2}
mà ps trên tối giản khi d=1
Gọi ƯCLN(4n+1;6n+1)=d
=> 4n+1 chia hết cho d
6n+1 chia hết cho d
=> 3(4n+1) chia hết cho d
2(6n+1) chia hết cho d
=> 12n+3 chia hết cho d
12n+2 chia hết cho d
=> (12n+3)-(12n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 4n+1/6n+1 là phân số tối giản
Chúc bạn học tốt :)) vananh nguyendao
a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)
=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1
=> 3n-2/4n-3 là phân số tối giản
b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)
a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.
b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)
\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.
Gọi ƯC( 4n+1; 6n+1 ) = d
⇒ 4n+1 ⋮ d ⇒ 12n+3 ⋮ d
⇒ 6n+1 ⋮ d ⇒ 12n+2 ⋮ d
⇒ [ ( 12n+3 ) - ( 12n+2 ) ] ⋮ d
⇒ 1 ⋮ d ⇒ d = + 1
Vì ƯC( 4n+1; 6n+1 ) = + 1 nên \(\frac{4n+1}{6n+1}\) là p/s tối giản
thanks nE N nên không cần + 1 nữa