Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+5b^2-4ab+2a-6b+3\)
\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)
Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)
\(5a^2+10b^2-6ab-4a+2b+3\)
\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)
\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)
a) a2 - 2a + 2 = ( a2 - 2a + 1 ) + 1 = ( a - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
b) 6b - b2 - 10 = -( b2 - 6b + 9 ) - 1 = -( b - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
a:Sửa đề: \(a^2-4ab+4b^2\)
\(=a^2-2\cdot a\cdot2b+4b^2\)
\(=\left(a-2b\right)^2\ge0\)(luôn đúng)
b: \(-2a^2+a-1\)
\(=-2\left(a^2-\dfrac{1}{2}a+\dfrac{1}{2}\right)\)
\(=-2\left(a^2-2\cdot a\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)
\(=-2\left(a-\dfrac{1}{2}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\forall x\)
a) Ta có: \(a^2-2a+2\)
\(=\left(a^2-2a+1\right)+1\)
\(=\left(a-1\right)^2+1>0\) với mọi a
\(=>\left(đpcm\right)\)
b)Ta có: \(6b-b^2-10\)
\(=-\left(b^2-6b+3^2\right)-1\)
\(=-\left(b-3\right)^2-1< 0\) với mọi b
=>(đpcm).
\(a^2+5b^2-4ab+2a-6b+3\)
\(=a^2-4ab+2a+5b^2-6b+3\)
\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)
\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)
Vì \(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b) (đpcm)