Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ n =1 đúng
+ g/s đúng với n =k
=> 13 +23 +.....+k3 =(k(k+1)/2)2
+với n = k+1
=> 13 +23 +.....+ k3 +(k+1)3 = ( 1+2+....+k)2 + (k+1)3 =\(\frac{\left(k+1\right)^2k^2}{4}+\left(k+1\right)^3=\frac{1}{4}\left(k+1\right)^2\left(k^2+4k+4\right)=\frac{1}{4}\left(k+1\right)^2\left(k+2\right)^2=\left(\frac{\left(k+1\right)\left(k+2\right)}{2}\right)^2\)
Vậy đúng với n =k+1
=> dpcm
Đăng nhiều thế
+ với n =1
=> 13 = [1.(1+1)/2)2 =1 ( đúng)
+ Giả sử (*) đúng với n =k
=> ta có 13 +23 +....+ k3 = (k(k+1)/2)2
+
a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2=3^2\cdot3^3\cdot\left(\frac{1}{3}\right)^43^2=3^7\cdot\frac{1}{3^4}=3^3\)
b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)=2^2\cdot2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)
c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2=3^2\cdot2^5\cdot\frac{2^2}{3^2}=2^7\)
d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2=\frac{1}{3^2}\cdot\frac{1}{3}\cdot3^4=\frac{1}{3^3}\cdot3^4=3\)
a)9.33.\(\frac{1}{81}\).32
=32.33.34.\(\frac{1}{3^4}\).32
=311.\(\frac{1}{3^4}\)
=37
b)4.25:(\(2^3.\frac{1}{16}\))
=22.25:(\(2^3.\frac{1}{2^4}\))
=27:\(\frac{2^3}{2^4}\)
=27.\(\frac{2^4}{2^3}\)
=\(\frac{2^{11}}{2^3}\)
=28
c)32.25.\(\left(\frac{2}{3}\right)^2\)
=32.25.\(\frac{2^2}{3^2}\)
=\(\frac{3^2.2^5.2^2}{3^2}\)
=27
d)\(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2\)
=\(\frac{1^2}{3^2}.\frac{1}{3}.\left(3^2\right)^2\)
=\(\frac{1^2}{3^2}.\frac{1}{3}.3^4\)
=\(\frac{1^2}{3^2}.\frac{3^4}{3}\)
=\(\frac{1^2}{3^2}.3^3\)
=3
a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)
=>n=5
b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)
=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)
=>n=3
c)\(\dfrac{16}{2^n}=2\)
=>2n=\(\dfrac{16}{2}\)
=>2n=8
=>2n=23
=>n=3
d)\(\dfrac{\left(-3\right)^n}{81}=-27\)
=>(-3)n=-27.81
=>(-3)n=-2187
=>(-3)n=(-3)7
=>n=7
e)8n:2n=4
=>(23)n:2n=4
=>23n:2n=4
=>23n-n=4
=>22n=4
=>22n=22
=>2n=2
=>n=1
f)32.3n=35
=>3n=35:32
=>3n=35-2
=>3n=33
=>n=3
g) (22:4).2n=4
=>1.2n=22
=>n=2
h)3-2.34.3n=37
=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37
=>32.3n=37
=>32+n=37
=>2+n=7
=>n=5
a) Câu này thiếu đề nhé bạn.
b) \(\frac{25}{5^n}=5\)
\(\Rightarrow5^n=25:5\)
\(\Rightarrow5^n=5\)
\(\Rightarrow5^n=5^1\)
\(\Rightarrow n=1\)
Vậy \(n=1.\)
c) \(\frac{81}{\left(-3\right)^n}=-243\)
\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)
\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)
\(\Rightarrow n=-1\)
Vậy \(n=-1.\)
e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)
\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
Chúc bạn học tốt!
d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}\)
\(\Rightarrow2^n=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Vậy \(n=6.\)
g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)
\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3.\)
h) \(5^{-1}.25^n=125\)
\(\Rightarrow5^{-1}.5^{2n}=5^3\)
\(\Rightarrow5^{-1+2n}=5^3\)
\(\Rightarrow-1+2n=3\)
\(\Rightarrow2n=3+1\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=4:2\)
\(\Rightarrow n=2\)
Vậy \(n=2.\)
k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)
\(\Rightarrow3^{n-1}.7=7.3^6\)
\(\Rightarrow n-1=6\)
\(\Rightarrow n=6+1\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
a: \(=3^2\cdot3^3\cdot3^{-4}\cdot3^2=3^{2+3-4+2}=3^3\)
b: \(=2^2\cdot2^5:\left(2^3\cdot\dfrac{1}{2^4}\right)=2^7:\dfrac{1}{2}=2^8\)
c: \(=9\cdot32\cdot\dfrac{4}{9}=128=2^7\)
d: \(=\dfrac{1}{27}\cdot3^4=3^1\)
Đầu tiên, Tính S1=1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)
*/ Tính S2=12+22+32+...+n2
Đặt: S2'=1.2+2.3+3.4+...+n(n+1)
=>3S2'=1.2.3+2.3.3+3.4.3+...+n(n+1).3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)−(n−1)]
Nhân ra và rút gọn ta được: 3S2′=n(n+1)(n+2) => S2'=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta lại có: S2′=1.2+2.3+3.4+...+n(n+1)=(12+22+32+...+n2)+(1+2+3+...+n)=S2+S1=S2+\(\frac{n\left(n+1\right)}{2}\)
=> S2=S2'-\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) -\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
S3=