Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)
\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)
2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )
Vt >/ 3 + 2 = 5
VP </ 5
dấu = xảy ra khi x =-1
Ta có: Vế trái = \(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^24}\ge\sqrt{9}+\sqrt{4}=5\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x^2=1\end{matrix}\right.\Leftrightarrow x=-1\)
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
\(\sqrt{3\left(x^2+2x+1\right)+9}\ge3\) (1)
\(\sqrt{5\left(x^4-2x^2+1\right)+4}\ge2\) (2)
\(\Rightarrow\left(1\right)+\left(2\right)\ge5\)
a)\(pt\Leftrightarrow\sqrt{x^2-2x+2}+\sqrt{3x^2-6x+4}-2=0\)
\(\Leftrightarrow\sqrt{x^2-2x+2}-1+\sqrt{3x^2-6x+4}-1=0\)
\(\Leftrightarrow\frac{x^2-2x+2-1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+3}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+2}+1}+\frac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}>0\) (loại)
Nên x-1=0 suy ra x=1
b)\(pt\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}+x^2+2x-5=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+21}-4+x^2+2x+1=0\)
\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+21-16}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)
Dễ thấY: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1>0\) (loại luôn)
Nên x+1=0 suy ra x=-1
<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)
mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\), \(\sqrt{5\left(x^2-1\right)^2+4}\ge4\), \(2\left(x+1\right)^2\ge0\)với mọi x
=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)
'=" xảy ra<=> x+1=0<=> x=-1
a/ ĐKXĐ: ...
\(\sqrt{x-7}-\frac{1}{2}+\sqrt{x-5}-\frac{3}{2}=0\)
\(\Leftrightarrow\frac{x-\frac{29}{4}}{\sqrt{x-7}+\frac{1}{2}}+\frac{x-\frac{29}{4}}{\sqrt{x-5}+\frac{3}{2}}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)\left(\frac{1}{\sqrt{x-7}+\frac{1}{2}}+\frac{1}{\sqrt{x-5}+\frac{3}{2}}\right)=0\)
\(\Leftrightarrow x=\frac{29}{4}\)
b/ \(\Leftrightarrow\sqrt{x^2-6x+9}=3x+2\left(x\ge-\frac{2}{3}\right)\)
\(\Leftrightarrow x^2-6x+9=9x^2+12x+4\)
\(\Leftrightarrow8x^2-18x-5=0\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{1}{4}\end{matrix}\right.\)
c/
\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5x^2\left(x^2+2\right)+9}=5-2\left(x+1\right)^2\)
Do \(\left\{{}\begin{matrix}3\left(x+1\right)^2+9\ge9\\5x^2\left(x^2+2\right)\ge9\end{matrix}\right.\) \(\Rightarrow VT\ge\sqrt{9}+\sqrt{9}=6\)
\(VP=5-2\left(x+1\right)^2\le5< VP\)
Pt luôn vô nghiệm
tách trong căn thành hđt thôi
căn thứ 1 >=3
căn thứ 2 >=2
=> đpcm
= \(\sqrt{3\left(x^2+2x+4\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)
=\(\sqrt{3\left(x^2+2x+1+3\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)
= \(\sqrt{3\left[\left(x+1\right)^2+3\right]}+\sqrt{5x^2\left(x^2-2\right)+9}\)
=\(3\left(x+1\right)+\sqrt{5}.x.x.\left(-\sqrt{2}\right)+3\)
=\(3\left(x+1\right)-\sqrt{10}.x^2+3\)
P/s: Mình mới học lớp 8 nên chỉ có thể khai triển như thế thôi, phần chứng minh bạn làm tiếp nhé.