K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Ta có : \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

16 tháng 2 2020

Cách khác : Dùng HĐT quen thuộc :

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(a^2+b^2\ge2ab\)

Cộng các vế của BĐT, rồi chia 2 ta được BĐT cần chứng minh.

4 tháng 9 2016

giả sử: a4 + b4+c4+1 > 2a( ab2-a+c+1) 
<=> a^4-2(ab)^2 + b^4 + a^2-2ac+c^2 + a^2-2a+1>0 ( bạn chuyển vế rùi tách ra như mình nha) 
<=> (a^2-b^2)^2 + (a-c)^2 + (a-1)^2 >0 (1) 
nhận thấy (a^2-b^2)^2>=0 
(a-c)^2>=0 
(a-1)^2 >= 0 
=> (1) luôn đúng

20 tháng 3 2018

a) \(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

20 tháng 3 2018

Câu a :

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu = xảy ra khi \(a=b\)

Câu b :

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )

Dấu = xảy ra khi \(a=b=c\)

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

16 tháng 5 2019

b) Áp dụng bđt bunhiacopxki ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

6 tháng 2 2020

\(\Rightarrow a^2+b^2+c^2+d^2+2\left(ab+bc+dc+ad\right)=4\)(*)

Có 2(ab+bc+dc+ad)<=2(a^2+b^2+c^2+d^2 )(**)

Cộng 2 vế của (**) cho a^2+b^2+c^2+d^2 có

3(a^2+b^2+c^2+d^2)>=4

19 tháng 4 2017

Bài 1:

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=1\)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)

\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bài 3:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)

\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)

5 tháng 5 2017

bài 1 mình thấy sao sao ý !!

đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

4 tháng 4 2020

a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)

CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)

c/CM: \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)

d/Ta xét hiệu: \(a^4-4a+3\)

\(=a^4-2a^2+1+2a^2-4a+2\)

\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)

Suy ra BĐT luôn đúng

e/Ta xét hiệu:( Làm nhanh)

\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)

\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)

\(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)

Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)

g/Làm rồi..xem lại trong trang cá nhân

h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(=a^5b+ab^5-a^2b^4-a^4b^2\)

\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)

\(=ab\left(a^2-b^2\right)\left(a-b\right)\)

\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)

Suy ra ĐPCM

6 tháng 4 2015

cau 2

a^2 +b^2+c^2 +3>=2(a+b+c)

<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0

<=>(a-1)^2+(b-1)^2+(c-1)^2>=0    (luon đúng)

vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)

6 tháng 4 2015

cau 1

a^2 +b^2 +1>= ab +a +b   (H)

<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0   (nhân cả 2 vế với 2 đồng thời chuyển vế)

<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0

<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0    (luon dung)

=>H luôn đung

5 tháng 4 2019

a)

\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^3+2b^3\ge a^3+ab^2+a^2b+b^3\)

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-ab^2-a^3-b^3\ge0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Vì a , b > 0 nên BĐT trên đúng, mà các phép biến đổi là tương đương

=> ĐPCM

b) Ta có

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

\(\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3ab^2+3a^2b\)

\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Theo câu a , có phần trong ngoặc luôn lớn hơn hoặc bằng 0

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Các phép biến đổi là tương đương => ĐPCm

5 tháng 4 2019

\(\left(a+b\right)^4=a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)

\(\Leftrightarrow8\left(a^4+b^4\right)\ge a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(\Leftrightarrow7\left(a^4+b^4\right)\ge4a^3b+6a^{^2}b^2+4ab^3\)

\(\Leftrightarrow7a^4+7b^4-4a^3b-6a^2b^2-4ab^3\ge0\)

\(\Leftrightarrow4a^3\left(a-b\right)-4b^3\left(a-b\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow4\left(a-b\right)^2\left(a^2+ab+b^2\right)+3\left(a^2-b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra

<=> a=b

\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)

\(\Leftrightarrow a^4+2a^2b^2+b^4-a^3b-2a^2b^2-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> a=b