Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x-1\right)-5\sqrt{x-1}+6}{\sqrt{x-1}\cdot\left(\sqrt{x-1}-3\right)}=\frac{\left(\sqrt{x-1}-2\right)\cdot\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\cdot\left(\sqrt{x-1}-3\right)}\) Đk x\(\ne\) 1;10
\(A=\frac{\sqrt{x-1}-2}{\sqrt{x-1}}=1-\frac{2}{\sqrt{x-1}}\)
Để căn thức có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{x+1}\ge0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1\le0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)
Vậy...
\(P=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\ge\frac{3.4}{a^2+b^2+2ab}+\frac{2}{\left(a+b\right)^2}=\frac{14}{\left(a+b\right)^2}=14\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
mình ko biết rất xin lỗi
ai tích mình tíc lại
ai tích mình tích lại
aih lại tích mình tích lại