Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\in\left(-1;2\right)\)
b: \(x\in[8;10)\cup\left[25;30\right]\)
c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)
a) \(x\in S=(-\infty;-5]\cup[7;+\infty)\)
b) \(x\in S=\left(-1;2\right)\cup(5;10]\)
a)
\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
\(\)Ta có
\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)
=> Bất phương trình đàu tiên sai, hệ bất phương trình sai
b)
\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)
\(a^2=b^2+c^2-bc\Rightarrow bc=b^2+c^2-a^2\)
\(\Rightarrow cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{bc}{2bc}=\dfrac{1}{2}\Rightarrow A=60^0\)
Tương tự: \(ac=a^2+c^2-b^2\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{1}{2}\Rightarrow B=60^0\)
\(\Rightarrow C=180^0-\left(A+B\right)=60^0\)
\(\Rightarrow A=B=C=60^0\Rightarrow\Delta ABC\) đều