Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2014}-5^{2013}+5^{2012}\)
\(=5^{2011}.\left(5^3-5^2+5\right)\)
\(=5^{2011}.105\)\(⋮105\)
\(\Rightarrow5^{2014}-5^{2013}+5^{2012}⋮105\)\(\left(đpcm\right)\)
Ta có: \(5^{2014}-5^{2013}+5^{2012}=5^{2011}\left(5^3-5^2+5\right)\)
\(=5^{2011}.105⋮105\)
\(\Rightarrow5^{2014}-5^{2013}+5^{2012}⋮105\left(đpcm\right)\)
Vậy...
ta có:
\(5^{2014}-5^{2013}+5^{2012}\)
\(=5^{2012}\left(5^2-5+1\right)\)
\(=5^{2012}\left(25-5+1\right)\)
\(=5^{2012}.21\)
ta thấy: \(5^{2012}.21⋮21\)
\(5^{2012}.21⋮5\)
\(\Rightarrow5^{2012}.21⋮21.5\)
\(\Rightarrow5^{2012}.21⋮105\)
\(\Leftrightarrow5^{2014}-5^{2013}+5^{2012}⋮105\left(đpcm\right)\)
\(A=5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^1+5^0\right)=21.5^{2012}\\ \)
\(\hept{\begin{cases}105=21.5\\A=21.5^{2012}\end{cases}}\Rightarrow\frac{A}{105}=\frac{21.5^{2012}}{21.5}=5^{2011}\Rightarrow dpcm\)
5^2014-5^2013+5^2012=5^2012(5^2-5^1+1)
=5^2012.21
=5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
(x-7/2012 +1)+(x-6/2013 +1) =(x-5/2014 +1) +(x-4/2015 +1)
x-2019 /2012 + x-2019 /2013 = x-2019 / 2014 + x-2019 /2015
x-2019 /2012+ x-2019 /2013 - x-2019 /2014 - x-2019 /2015 = 0
(x-2019) * (1/2012 + 1/2013 - 1/2014 -1/2015) = 0
Vì x khác 0 =>1/2012 + 1/2013 -1/2014 -1/2015 khác 0
=> x-2019=0
x = 0+2019
x = 2019
Vậy x=2019
tick mình nha
\(5^{2014}-5^{2013}+5^{2012}=5^{2011}\left(5^3-5^2+5\right)\)
\(=5^{2011}.\left(125-25+5\right)=5^{2011}.105⋮105\)
thank bạn nha