Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Ta có: \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)
\(VT=\dfrac{x}{1+yz}+\dfrac{y}{1+xz}+\dfrac{z}{1+xy}\)
\(=\dfrac{x^2}{x+xyz}+\dfrac{y^2}{y+xyz}+\dfrac{z^2}{z+xyz}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3xyz}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\dfrac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}}\)
\(=\dfrac{3\left(x+y+z\right)}{4}\). Cần chứng minh:
\(\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{3\sqrt{3}}{4}\Leftrightarrow x+y+z\ge\sqrt{3}\)
BĐT cuối đúng vì \(x+y+z\ge\sqrt{3\left(xy+yz+xz\right)}=\sqrt{3}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
Ps: nospoiler
Ta có: \(x^2+2xy+y^2-4xy\ge0\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{xy}{x+y}\le\frac{x+y}{4}\)
Tương tự: \(\frac{yz}{y+z}\le\frac{y+z}{4}\) và \(\frac{xz}{x+z}\le\frac{x+z}{4}\)
Cộng 3 bất đẳng thức vừa tìm được ta có:
\(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\le\frac{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)}{4}=\frac{x+y+z}{2}\)
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
Mk nghĩ là x3,y3,z3.
Áp dụng BĐT AM-GM:
\(\Sigma_{cyc}\left(\frac{x^2}{\sqrt{x^3+8}}\right)=\Sigma_{cyc}\left(\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\right)\)\(\ge2\Sigma_{cyc}\left(\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BĐT Cauchy-Schwart:
\(2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)\(=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(x+y+z\right)+18}\)\(\ge\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(x+y+z\right)-\left(x+y+z\right)+18}\)
gt\(\Leftrightarrow3\left(x+y+z\right)\le3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z\le0\\x+y+z\ge3\end{matrix}\right.\)
Đặt t=x+y+z\(\left(t\ge3\right)\)
Cần c/m:\(\frac{2t^2}{t^2-3t+18}\ge1\)
Có :\(t^2-3t+18>0\)
\(\Rightarrow2t^2\ge t^2-3t+18\)
\(\Leftrightarrow t^2+3t-18\ge3^2+3.3-18=0\)(Đúng)
Vậy min =1
Dấu = xra khi x=y=z=1.
#Walker
Kiểm tra giùm em đúng ko ạ Akai Haruma
\(x^2+y^2+z^2\ge xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2zx+z^2\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(luôn.đúng\right)\)
Dấu "=' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi \(x=y=z\)