Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1930^1930 có tc là 0
1945^1945 có tc là 5
1954^1954 có tc là 6 (mũ chẵn)
1975^1975 có tc là 5
2011^2011 có tc là 1
<=> A có tc là 0+5+6+5-1=15 chia hết cho 5 => A chia hết cho 5
Cho mình cái like đó để mình còn có hứng giải tiếp :
1. a. Mọi 574n đều có tận cùng là 1. Vậy 571999=574.499+3=574.499.573=(.....1).(.....3)
= ......3. Có tận cùng là 3
b.Mọi 934n đều có tận cùng là 1. Tương tự câu a.
2.
Mọi 9999934n đều có tận cùng là 1.Mọi 5555574n đều có tận cùng là 1.Vậy 9999931999-5555531997=(......1).(.....3)-(......1).(.......3)=0. Có tận cùng là 0 nên chia hết cho5
a - 3
b - 7
A= 999993^1999 - 55555^1997
= ............7 - .............5
==> A CHIA HẾT CHO 5
biết 1890 chia hết cho 7
1945+1 =1946 chia hết cho 7
1946+1890=3836 cũng chia hết cho 7
số mũ =a x a x a x.......
mà bất cứ số nào chia hết cho 7 nhân với bao nhiêu cũng chia hết cho 7 vậy suy ra 18901930+19451975+1 chia hết cho 7
Ta có:
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)
\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)
\(A=\overline{\left(.....0\right)}\)
Vì A có tận cùng là 0
\(\Rightarrow A⋮5\) (Đpcm)
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)
999993^1 tận cùng là 3
999993^2 ....................9
999993^3 ....................7
999993^4 ....................1
999993^5 ....................3
Vậy 999993^(m+4k) và 999993^m có chữ số tận cùng giống nhau ---> chữ số tận cùng của 999993^1999 = 999993^(3 + 4.499) là 7
Làm tương tự sẽ thấy chữ số tận cùng của 555557^1997 cũng là 7 ---> chữ số tận cùng của A là 0 ---> A chia hết cho 5
Hello bạn ^_^"
Có :
+) 9999931999 = ...31999 = ...31996 x ...33 = (...34)499 x ...33 = ...1499 x ...27 = ...1 x ...7 = ...7
+) 5555571997 = ...71996 x ...71 = (...74)499 x ...7 = ...1499 x ...7 = ...1 x ...7 = ...7
Ta có : 9999931999 - 5555571997 = ...7 - ...7 = ...0 \(⋮\)5
Vậy ta có điều phải chứng minh !!!
Okê, số có tận cùng là 3 hoặc 7 khi lũy thừa lên 4 sẽ có số tận cùng là 1.
VD :
4645396 = (...34)24 = ...124 = ...1
nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5
Tick nha
Ta có: 9999931999=(...3)499.4+3
=[(...3)4]499.(...3)3
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Ta có: 5555571997=(...7)4.499+1
=[(...7)4]499.(...7)1
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Vậy A=(...7)-(...7)=(...0)
Mà các số có CSTC là 0 thì chia hết cho 5
=>A chia hết cho 5(đpcm)
sao mà tính
a.
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)