Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
1,Gọi UCLN(n+1,n+2)=d
Ta có:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{n+1}{n+2}\)tối giản
Gọi d là ƯCLN của 2n - 3 ; n - 2
Khi đó 2n - 3 chia hết cho d , n - 2 chia hết cho d
<=> 2n - 3 chia hết cho d , 2(n - 2) chia hết cho d
<=> 2n - 3 chia hết cho d , 2n - 4 chia hết cho d
<=> 2n - 3 - (2n - 4) chia hêt cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/s A tối gian
Gọi ƯCLN(2n-3;n-2) là d(dEN).
=>2n-3 chia hết cho d và n-2 chia hết cho d.
=>2n-3 chia hết cho d và 2(n-2) chia hết cho d.
=>2n-3 chia hết cho d và 2n-4 chia hết chp d.
=>2n-3-(2n-4)=1 chia hết cho d.
Mà dEN;d lớn nhất =>d=1.
=>(2n-3;n-2)=1.
=>A tối giản với mọi nEZ;n khác 2.
k nha đúng đó
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
Gọi d=ƯCLN(n2+n-1 ; n2+n+1)
=> \(n^2+n-1⋮d\)
\(n^2+n+1⋮d\)
=> \(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)
=> \(2⋮d\)
Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ
=> \(d\ne2\)
=> d=1
Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản
Gọi d=ƯCLN(n2+n-1 ; n2+n+1)
=> n^2+n-1⋮d
n^2+n+1⋮d
=> (n2+n+1)−(n2+n−1)⋮d
=> 2⋮d
Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ
=> d khác 2
=> d=1
Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản
Ta cần c/m: \(\left(n;n+1\right)=1\)
Thật vậy,đặt \(\left(n;n+1\right)=d\).Ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\)
Suy ra \(d=1\).Vậy \(\frac{n}{n+1}\) là phân số tối giản với mọi n thuộc Z,n khác 0. (đpcm)
Gọi d là ƯCLN\((n,n+1)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy : ......
Ta thấy : (với \(n\in N\)) thì n + 1 > n.
Giả sử như \(\frac{n}{n+1}\)chưa tối giản thì n + 1 phải chia hết cho n và n khác 1.
=> n + 1 chia hết cho n
=> 1 chia hết cho n
=> n = 1
=> loại
Vậy \(\frac{n}{n+1}\) là phân số tối giản.
Gọi d là Ước chung của n và n+1
Ta co:
n chia hết cho d
n+1 chia het cho d
=> n+1 - n chia hết cho d
=> 1 chia het cho d
Vậy n và n+1 là 2 số nguyên tố cùng nhau
=> n/n+1 la phan so toi gian.