K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2019

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)

Theo BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\\a+b+c\ge3\sqrt[3]{abc}\end{matrix}\right.\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge\frac{3}{\sqrt[3]{abc}}.3\sqrt[3]{abc}=9\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

23 tháng 10 2019

cái này là toán 8 nên chưa hok bddt cô sy nha

3 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz dạng phân thức cho các số không âm:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(''=''\Leftrightarrow a=b=c\)

3 tháng 6 2019

Trình bày như vậy khó lắm nếu bn ấy chưa tìm hiểu

BĐT

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=9\)( do a,b,c>0)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}+\frac{\left(b-c\right)^2}{bc}+\frac{\left(a-c\right)^2}{ac}\ge0\)(đúng)

14 tháng 8 2019

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)

\(a+b+c\ge3\sqrt[3]{abc}\)     1

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)  2

nhân 1 vs 2 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\)

6 tháng 4 2017

Ta có:

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{1}{2}\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{2}\)

7 tháng 4 2017

BĐT trên \(=\frac{9}{2}\). Còn cách làm thì giống bạn alibaba nguyễn .

~~~ Chúc bạn học giỏi ~~~

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

22 tháng 9 2019

a) \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

11 tháng 7 2015

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{1+a+1+b+1+c}=\frac{9}{3+\left(a+b+c\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)