Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{100}\right)\)
\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{100}\right)\)\(=\left(1+1+...+1\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=100-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)(đpcm)
M = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3M = \(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+....+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
M+3M = \(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
4M < \(1-\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
Đặt A = \(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
3A = \(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+......+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)
A+3A=\(3-\dfrac{1}{3^{99}}\)
4A = \(3-\dfrac{1}{3^{99}}< 3=>A< \dfrac{3}{4}\)
=> 4M < \(\dfrac{3}{4}\) => M < \(\dfrac{3}{16}\) ĐPCM
Đặt :
\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-.............+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...............+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(3A+A=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...............+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\)\(+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-...............+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
\(4A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+..............+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(4A< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+............+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
Đặt :
\(B=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...........+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(3B=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+................+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)
\(3B+B=3-\dfrac{1}{3^{99}}\)
\(4B=3-\dfrac{1}{99}< 3\Rightarrow B< \dfrac{3}{4}\)
\(\Rightarrow4A< \dfrac{3}{4}\Rightarrow A< \dfrac{3}{16}\rightarrowđpcm\)
Lời giải:
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(A+3A=1+\frac{1-2}{3}+\frac{-2+3}{3^2}+\frac{3-4}{3^3}+\frac{-4+5}{3^4}+...+\frac{99-100}{3^{99}}-\frac{100}{3^{100}}\)
\(4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-.....+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(4A=(1-\frac{1}{3})+(\frac{1}{3^2}-\frac{1}{3^3})+...+(\frac{1}{3^{98}}-\frac{1}{3^{99}})-\frac{100}{3^{100}}\)
\(4A=\frac{2}{3}+\frac{2}{3^3}+...+\frac{2}{3^{99}}-\frac{100}{3^{100}}\)
\(2A=\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{50}{3^{100}}\)
\(18A=3+\frac{1}{3}+...+\frac{1}{3^{97}}-\frac{450}{3^{100}}\)
\(\Rightarrow 18A-2A=3-\frac{1}{3^{99}}-\frac{450}{3^{100}}+\frac{50}{3^{100}}=3-\frac{1}{3^{99}}-\frac{400}{3^{100}}\)
\(\Leftrightarrow 16A=3-\frac{1}{3^{99}}-\frac{400}{3^{100}}<3\Rightarrow A< \frac{3}{16}\)
Đặt A=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100
3A=1-2/3+3/3^2-4/3^3+...+99/3^98-100/3^99
3A+A=1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99-100/3^100
<1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99
Đặt S=1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99
3S=3-1+1/3-1/3^2+1/3^3-...-1/3^98
3S+S=3-1/3^99
S=(3-1/3^99) :4
S=3/4-1/4.3^99
\(\Rightarrow\)4A<3/4-1/4.3^99
\(\Rightarrow\)A<(3/4-1/4.3^99):4
\(\Rightarrow\)A<3/16-1/16.3^99<3/16
Vậy 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
a) Giải
Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)
\(\Rightarrow A< A.M\)
hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)
\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)
\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)
Vậy \(A< \dfrac{1}{10}\)
Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(A\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
A<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A<\(1-\dfrac{1}{100}=\dfrac{99}{100}\)(đpcm)
Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2.3},\dfrac{1}{3^2}>\dfrac{1}{3.4},...,\dfrac{1}{100^2}>\dfrac{1}{100.101}\)
A>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
A>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
A>\(\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)(đpcm)
Vậy \(\dfrac{99}{100}>A>\dfrac{99}{202}\)