K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

a) Đúng

b) Sai

c) Sai

d) Đúng

28 tháng 6 2015

a, không tồn tại chắc vậy

28 tháng 6 2015

a thì chắc không tồn tại rồi     

Còn b thì không biết

6 tháng 9 2016

Giả sử tồn tại x,y trái dấu thỏa mãn

Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

=> (x+y)2=xy 

Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0

Còn xy nhỏ hơn 0 vì x,y trái dấu

Vậy ko có x,y trái dấu thỏa mãn đề bài

6 tháng 9 2016

1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

28 tháng 8 2016

Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=>  1 / x+ y  =  x + y / xy  <=>(x+ y )^2 = xy    (1)        ( nhân chéo hai vế) 

Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y  => (x+y)^2 >xy trái với (1)  

Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm

28 tháng 8 2016

\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x.y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{x.y}\Rightarrow x.y=\left(x+y\right)^2\)

khong thoa man vi x.y la so am con (x+y)^2 la so duong

2 tháng 7 2017

Ta dùng phương pháp phản chứng :

giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)

đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )

Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài