Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(43^4=***1\)
=>(434)10= *****1
=>(434)10.43=******7
174=***1
=>(174)4=*****1
=>(174)4.17=*****7
=>A=********7-*****7=********0
=>A chia hết cho 10
Ta có:
\(43^{43}=43^{40}.43^3=\left(43^4\right)^{10}.43^3\)
\(=\left(...1\right)^{10}.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\left(1\right)\)
Lại có:
\(17^{17}=17^{16}.17^1=\left(17^4\right)^4.17\)
\(=\left(...1\right)^4.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow-0,7\left(43^{43}-17^{17}\right)=-0,7\left(...7-...7\right)\)
\(=-0,7.\left(...0\right)\)
Mà: \(\left\{{}\begin{matrix}-0,7\in Z\\\left(...0\right)\in Z\end{matrix}\right.\)\(\Rightarrow-0,7.\left(...0\right)\in Z\)
Vậy \(-0,7\left(43^{43}-17^{17}\right)\) là một số nguyên (Đpcm)
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> \(49^{500}\) tận cùng là 1
=> \(9^{500}\) tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
\(=-\frac{7}{10}\left(43^{43}-17^{17}\right)\)
\(43^{43}=43^{4.10+1}.43^2\) có tận cùng là \(7\)
\(17^{17}=17^{4.4+1}\) có tận cùng là \(7\)
\(\Rightarrow43^{43}-17^{17}\) có tận cùng là 0
\(\Rightarrow\left(43^{43}-17^{17}\right)⋮10\Rightarrow\) số đã cho là số nguyên
\(a,7^6+7^5-7^4=7^4\left(7^2+7-1\right)\\ =7^4\cdot55\\ \Rightarrow7^6+7^5-7^4⋮55\)
\(b,3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n\cdot3^2+3^n-2^n\cdot2^2-2^n\\ =3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\\ =3^n\cdot10-2^{n-1}\cdot2\cdot5\\ =10\cdot\left(3^n-2^{n-1}\right)\\ \Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
\(c,8^7-2^{18}=8^7-\left(2^3\right)^6\\ =8^7-8^6\\ =8^6\cdot\left(8-1\right)\\ =8^5\cdot8\cdot7\\ =8^5\cdot4\cdot14\\ \Rightarrow8^7-2^{18}⋮14\)
Ta có 43\(^1\) = 43
43\(^2\) = \(\overline{.......9}\) (tận cùng là 9)
43\(^3\) = \(\overline{........7}\);
43\(^4\) = \(\overline{........1}\);
43\(^3\) = \(\overline{........3}\)
=>43\(^{4k}\) =\(\overline{........1}\)
43\(^{4k+1}\) = \(\overline{........3}\)
43\(^{4k+2}\)= \(\overline{.......9}\)
43\(^{4k+3}\) = \(\overline{........7}\)
Mà 43 = 4.10 + 3 => 43\(^{43}\) = 43\(^{4.10+3}\) =\(\overline{........7}\) (tận cùng là 7)
Tương tự ta có 17\(^{17}\) cũng có tận cùng là 7
⇒43\(^{43}\)- 17\(^{17}\) tận cùng là 0, chia hết cho 10