Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
7 ^6+7^ 5-7 ^4
= 7^ 4.(7^ 2+7-1)
= 7^ 4.(49+7-1)
= 7^ 4.55 chia hết cho 55
=> 7 ^6+7^ 5-7 ^4 chia hết cho 55
Bài làm :
\(a,7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55⋮55\)
=> đpcm
\(b,2004^{100}+2004^{99}\)
\(=2004^{99}.\left(2004+1\right)\)
\(=2004^{99}.2005⋮2005\)
=> đpcm
Học tốt nhé
76 + 75 - 74
= 74( 72 + 7 - 1 )
= 74( 49 + 7 - 1 )
= 74.55 chia hết cho 55 ( đpcm )
2004100 + 200499
= 200499( 2004 + 1 )
= 200499.2005 chia hết cho 2005 ( đpcm )
\(7^6+7^5-7^4\)
= \(7^4.\left(7^2+7-1\right)\)
=\(7^4\left(49+7-1\right)\)
=\(7^4.55\)
Vì 55 chia hết cho 55 suy ra \(7^4.55⋮55\)
\(\Rightarrow7^6+7^5-7^4⋮55\)
Vậy ...
\(A=\)\(7^6\)\(+\)\(7^5\)\(-\)\(7^4\)
\(A=\)\(7^4\left(7^2+7-1\right)\)
\(A=\)\(7^4\left(49+7-1\right)\)
\(A=\)\(7^4.55\)chia hết cho 55
\(B=\)\(16^5\)\(+\)\(2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)chia hết cho 33
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)
Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)
b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
76 + 75 - 74 = 74 ( 72 + 7 - 1) = 74 . 55
Vì 74 . 55 chia hết cho 55
Nên 76 + 75 - 74 chia hết cho 55
sai đề à cậu 76 + 75 - 74
ta có ; 76 + 75 - 74
= 74(72 + 7 - 1)
= 74.55 chia hết cho 55
Sửa đề : \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\left(49+6\right)\)
\(=7^4\cdot55\)
7^4 x 55 chia hết cho 55 (đpcm)