Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(10^5+8=\left(100....0\right)+8=\left(100...8\right)⋮9\) \(\left(đpcm\right)\) (tổng các c/s chia hết cho 9)
b/ \(10^{2015}+2\left(100.....0\right)+2=\left(100....2\right)⋮3\left(đpcm\right)\) (tổng các c/c chia hết cho 3)
c/ \(10^n+11=\left(100...0\right)+11=\left(100.....011\right)⋮3\) (tổng các c/s chia hết cho 3)
d/ \(10^n+17=\left(100.....0\right)+17=\left(100...017\right)⋮3;9\) (tổng các c/s chia hết cho 3,9)
e/ \(10^n-1=\left(100....0\right)-1=\left(999.....99\right)⋮3;9\)
Làm thế khó nhìn. Em làm vầy dễ thấy hơn nè.
a/ \(10^5+8=\left(100000-1\right)+\left(8+1\right)=99999+9⋮9\)
b/ \(10^{2015}+2=\left(10...0-1\right)+\left(2+1\right)=\left(99...9\right)+3⋮3\)
c/ \(10^n+11=\left(100...0-1\right)+\left(11+1\right)=99...9+12⋮3\)
d/ \(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮3\)
\(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮9\)
Thế này dễ nhìn hơn e.
a)Ta thấy: 6 đồng dư với 1(mod 5)
=>6100 đồng dư với 1100(mod 5)
=>6100 đồng dư với 1(mod 5)
=>6100-1 đồng dư với 1-1(mod 5)
=>6100-1 đồng dư với 0(mod 5)
=>6100-1 chia hết cho 5
b)Ta thấy:21 đồng dư với 1(mod 10)
=>2120 đồng dư với 120(mod 10)
=>2120 đồng dư với 1(mod 10)
11 đồng dư với 1(mod 10)
=>1110 đồng dư với 110(mod 10)
=>1110 đồng dư với 1(mod 10)
=>2120-1110 đồng dư với 1-1(mod 10)
=>2120-1110 đồng dư với 0(mod 10)
=>2120-1110 chia hết cho 10
=>2120-1110 chia hết cho 2 và 5
c)Ta thấy:10 đồng dư với 1(mod 3)
=>109 đồng dư với 19(mod 3)
=>109 đồng dư với 1(mod 3)
=>109+2 đồng dư với 1+2(mod 3)
=>109+2 đồng dư với 3(mod 3)
=>109+2 đồng dư với 0(mod 3)
=>109+2 chia hết cho 3
d)Ta thấy:10 đồng dư với 1(mod 9)
=>1010 đồng dư với 110(mod 9)
=>1010 đồng dư với 1(mod 9)
=>1010-1 đồng dư với 1-1(mod 9)
=>109-1 đồng dư với 0(mod 9)
=>109-1 chia hết cho 9
a) 6100 - 1 = (....6) - 1 = (....5) => hiệu đó chia hết cho 5
2110 - 1110 = (....1) - (....1) = (...0) => hiệu đó chia hết cho 2 và 5
109 + 2 = 100..2 . tổng các chữ số bằng 3 => số đó chia hết cho 3
1010 - 1 = 999...9 = 9.111....1 chia hết cho 9
a) 74n-1 \(⋮\)74-1=2401-1=2400\(⋮\)5
b) 34n+1+2=(32)2n.3+2=92n.3+2
Ta có: 9≡-1(mod 5)
=> 92n≡1(mod 5)
=> 92n.3≡3(mod 5)
=>92n.3+2≡0(mod 5)
=>92n.3+2\(⋮\)5
Máy mình bị lỗi nhấn đọc tiếp ko được!
Cho mình xin lỗi!
Chúc bạn học tốt!
câu a: 7^4n = (7^4)^n
vì 7^4 tận cùng là 1, mà số tận cùng 1 mũ n vẫn luôn tận cùng là 1 => số đó trừ 1 sẽ tận cùng là 0 nên luôn chia hết cho 5
a) 74n = (72)2n = 492n = (....1)
=> 74n - 1 có tận cùng là 0 nên chia hết cho 5
b) 34n+1 = (32)2n .3 = 92n.3 = (....1).3 = (....3)
=> 34n+1 + 2 có tận cùng là 5 => chia hết cho 5
c) 92n+1 = (92n). 9 (...1).9 = (....9)
=> 92n+1 +1 có tận cùng la 0 => chia hết cho 5
a ) 109+2 chia hết cho 3
109=100....0 ( 9 chữ số 0)
Vậy109 có tổng =1
1+2=3(3 chia hết cho 3)
Vậy 109 chia hết cho 3
k nha !