K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

\(1,VT=\left(a-b\right)+\left(c-d\right)=a-b+c-d\)

           \(=\left(a+c\right)-\left(b+d\right)=VP\)

\(2,VT=\left(a-b\right)-\left(c-d\right)=a-b-c+d\)

            \(=\left(a+d\right)-\left(b+c\right)=VP\)

\(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)

\(a-b+c-d=a+c-b-d\)

\(a-b+c-d-a-c+b+d=0\)

\(0=0\left(đpcm\right)\)

\(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)

\(a-b-c+d=a+d-b-c\)

\(a-b-c+d-a-d+b+c=0\)

\(0=0\left(đpcm\right)\)

30 tháng 3 2016

ngu ngu ngu ngu ngu

26 tháng 5 2018

\(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c< a+b+c+d\\a+b+d< a+b+c+d\\b+c+d< a+b+c+d\\a+c+d< a+b+c+d\end{matrix}\right.\)

Ta có :

\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\\ \dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\\ \dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\\ \dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\\ \Rightarrow P>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=1\\ \Rightarrow P>1\left(1\right)\)

\(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c>d\\a+b+d>c\\b+c+d>a\\a+c+d>b\end{matrix}\right.\)

Ta có :

\(\dfrac{a}{a+b+c}=\dfrac{2a}{\left(a+b+c\right)+\left(a+b+c\right)}< \dfrac{2a}{a+b+c+d}\)

\(\dfrac{b}{a+b+d}=\dfrac{2b}{\left(a+b+d\right)+\left(a+b+d\right)}< \dfrac{2b}{a+b+c+d}\left(a+b+d>c\right)\\ \dfrac{c}{b+c+d}=\dfrac{2c}{\left(b+c+d\right)+\left(b+c+d\right)}< \dfrac{2c}{a+b+c+d}\left(b+c+d>a\right)\\ \dfrac{d}{a+c+d}=\dfrac{2d}{\left(a+c+d\right)+\left(a+c+d\right)}< \dfrac{2d}{a+b+c+d}\left(a+c+d>b\right)\)

Từ đó, ta có :

\(\dfrac{a}{a+b+d}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+c+d}< \\ \dfrac{2a}{a+b+c+d}+\dfrac{2b}{a+b+c+d}+\dfrac{2c}{a+b+c+d}+\dfrac{2d}{a+b+c+d}=2\\ \Rightarrow P< 2\left(2\right)\)

Từ (1) và (2), ta có điều phải chứng minh.

11 tháng 4 2020

Bài 1 : 

Ta có : P =  a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}

                = a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}

                = a . ( a - 3 -a - 3 - a + 2 )

               = a . ( - a - 8 ) = -8a -a2 

        : Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]

              = a + a + 3 - a - 2 - a - 2

             = -1 

Ta thấy -1> -8a - a2 => Q > P

Bài 2 : 

Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b 

<=> a - b + c = a - b + c = a + c - b 

do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm) 

Bài 3:

a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d ) 

<=> a - b + c - d      = a + c - b - d 

<=> a - a + c - c      - b + b - d + d  = 0

<=> 0 = 0 => VP = VT ( đpcm) 

b) a - b - ( c- d ) = ( a + d ) - ( b + c ) 

<=> a - b - c + d = a + d - b  -c 

<=> a - a - b + b - c + c + d -d = 0

<=> 0 =0 => VP = VT ( đpcm )

29 tháng 6 2017

B1: Ta có :a/b < c/d

=>ad/bd < bc/ba

=>ad < bc

23 tháng 1 2019

câu a sai đề nha!!

bài này bn chỉ cần bỏ ngoặc là ra hết thôi mà

23 tháng 1 2019

a, đề của bạn sai

b, ta có : (a - b ) - (c - d ) = a - b -c -(- d )

                                     = a - b - c + d

                                     = (a + d ) + (-b - c )

                                     =(a + d) - (b + c)

=> (a - b)-(c - d ) = (a + d) - (b + c)

4 tháng 2 2020

a) ( a - b ) + ( c - d ) - ( a + c ) 

= a - b + c - d - a - c

= ( a - a ) + ( c - c ) - ( b + d )

= 0 + 0 - ( b + d )

= - ( b + d )

b) ( a - b ) - ( c - d ) + ( b + c )

= a - b - c + d + b + c

= a + ( -b + b ) + ( -c +  c ) + d

= a + 0 + 0 + d

= a + d

4 tháng 2 2020

~ HỌC TỐT ~