Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
\(A=\dfrac{a^4}{a\left(b+c\right)}+\dfrac{b^4}{b\left(a+c\right)}+\dfrac{c^4}{c\left(a+b\right)}\)
\(\Rightarrow A\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2ab+2ac+2bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+a^2+c^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{2}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}a=b=c=\dfrac{\sqrt{6}}{3}\\a=b=c=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\)
Bạn chép đề sai?
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có: \(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2\sqrt{a^2}=2a\)
Tương tự với các vế ta được: \(\left\{{}\begin{matrix}\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)
Cộng theo vế: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)
\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
\(\dfrac{a^3}{b^3}+\dfrac{a^3}{b^3}+1+\dfrac{b^3}{c^3}+\dfrac{b^3}{c^3}+1+\dfrac{c^3}{a^3}+\dfrac{c^3}{a^3}+1\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)
\(\Leftrightarrow2\left(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\right)\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)-3\)
\(\ge2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)+3-3=2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)
\(\Leftrightarrow\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^2}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^2}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\ge2\dfrac{a}{b}+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\)
\(=\dfrac{2a}{b}+\dfrac{c^3}{a^3}-\dfrac{c^2}{a^2}\ge0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
a: \(a+\dfrac{1}{a}\ge2\sqrt{a\cdot\dfrac{1}{a}}=2\)
b: \(\Leftrightarrow\dfrac{a^2+a+1+1}{\sqrt{a^2+a+1}}>=2\)
=>\(\sqrt{a^2+a+1}+\dfrac{1}{\sqrt{a^2+a+1}}>=2\)(1)
\(\sqrt{a^2+a+1}+\dfrac{1}{\sqrt{a^2+a+1}}>=2\sqrt{\sqrt{a^2+a+1}\cdot\dfrac{1}{\sqrt{a^2+a+1}}}=2\)
nên (1) đúng
theo BĐT cauchy schwars engel ta có
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)
\(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{a+c}=\dfrac{4}{a+c}\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)
cộng vế theo vế ta có \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\right)\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)
vậy đpcm
Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:
\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)
\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)
Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)
\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)
\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
\(\Rightarrow dpcm\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)
\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(
Lời giải:
Phải thêm điều kiện $a,b,c>0$ nữa bạn nhé
Ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c\)
\(\Leftrightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-a-b-c\geq 0\)
\(\Leftrightarrow \frac{a^2}{b}-(2a-b)+\frac{b^2}{c}-(2b-c)+\frac{c^2}{a}-(2c-a)\geq 0\)
\(\Leftrightarrow \frac{a^2-2ab+b^2}{b}+\frac{b^2-2bc+c^2}{c}+\frac{c^2-2ac+a^2}{a}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq 0\)
(luôn đúng với mọi $a,b,c>0$)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Hoặc có thể sử dụng BĐT Cauchy như sau:
\(\frac{a^2}{b}+b\geq 2\sqrt{\frac{a^2}{b}.b}=2a\)
\(\frac{b^2}{c}+c\ge 2\sqrt{\frac{b^2}{c}.c}=2b\)
\(\frac{c^2}{a}+a\geq 2\sqrt{\frac{c^2}{a}.a}=2c\)
Cộng theo vế:
\(\Rightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+(a+b+c)\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$