Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aba chia hết cho 33 => aba chia hết cho 11 và 3.
aba chia hết cho 11 => a+a-b=2a-b chia hết cho 11.
và aba chia hết cho 3 => a+a+b=2a+b chia hết cho 3.
xét a từ 1
a=1 => 2a-b=2-b chia hết cho 11 =>b=2; 2a+b=4 không chia hết cho 3 (loại).
a=2 => 2a-b=4-b chia hết cho 11 =>b=4; 2a+b=8 không chia hết cho 3 (loại).
a=3 => 2a-b=6-b chia hết cho 11 =>b=6; 2a+b=12 Chia hết cho 3 (nhận) aba=363.
a=4 => 2a-b=8-b chia hết cho 11 =>b=8; 2a+b=16 không chia hết cho 3 (loại).
a=5 => 2a-b=10-b chia hết cho 11 =>không tồn tại b;
a=6 => 2a-b=12-b chia hết cho 11 =>b=1; 2a+b=13 không chia hết cho 3 (loại).
a=7 => 2a-b=14-b chia hết cho 11 =>b=3; 2a+b=17 không chia hết cho 3 (loại).
a=8 => 2a-b=16-b chia hết cho 11 =>b=5; 2a+b=21 Chia hết cho 3 (nhận) aba=858.
a=9 => 2a-b=18-b chia hết cho 11 =>b=7; 2a+b=25 không chia hết cho 3 (loại).
Vậy có 2 số: là 363 và 858.
a)
3n+1 chia hết cho 11-n=> -3(-n+11)+34 chia hết cho 11-n
Mà -3(-n+11) chia hết cho 11-n=>34 chia hết cho 11-n=>11-n thuộc U(34)={1,2,17,34,-1,-2,-17,-34} mà n thuộc N =>n thuộc {10,9,12,13,28,45}
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
\(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề