K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 12 2021

Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 3$
Vì $n(n-1)$ là tích 2 số nguyên liên tiếp nên $n(n-1)\vdots 2$

$\Rightarrow n^5-n\vdots 2,3$
Mà $(2,3)=1$ nên $n^5-n\vdots 6(*)$

Mặt khác:
Ta biết rằng 1 scp chia 5 có thể có dư là $0,1,4$
$\Rightarrow n(n^2-1)(n^2+1)\vdots 5, \forall n$ nguyên $(**)$

Từ $(*); (**)\Rightarrow n^5-n\vdots (5.6=30)$

26 tháng 10 2016

Ta có:A=\(5^{n+2}+5^{n+1}+5^n\)

A=\(5^n\cdot5^2+5^n\cdot5^1+5^n\)

A=\(5^n\left(5^2+5+1\right)\)

A=\(5^n\cdot31⋮31\left(đpcm\right)\)

26 tháng 10 2016

Ta có: \(A=5^{n+2}+5^{n+1}+5^n\)

\(\Rightarrow A=5^n.5^2+5^n.5+5^n\)

\(\Rightarrow A=5^n.\left(5^2+5+1\right)\)

\(\Rightarrow A=5^n.31⋮31\)

Vậy \(A⋮31\)

4 tháng 4 2017

gt= 25n + 5n - 18n - 12n
mình kí hịu đồng dư là dd nhak. 
* Chứng minh gt chia het cho 7: 
25 dd 4 (mod 7) => 25n dd 4n (mod 7) 
18 dd 4 (mod 7) => 18n dd 4n (mod 7) 
=> 25n - 18n chia hết cho 7. 
chứng minh tt 5n - 12n chia hết cho 7 
=> gt chia hết cho 7 
* Chứng minh gt chia hết cho 13 
25 dd -1 (mod 13) => 25n dd (-1)n (mod 13) 
12 dd -1 (mod 13) => 12n dd (-1)n (mod 13) 
=> 25n - 12n chia hết cho 13 
chứng minh tt 5n - 18n chia hết cho 13 
Vậy bài toán \(ĐPCM\)

Nhiều thế không ai làm đâu bạn          

9 tháng 6 2016

nhiều nhỉ lấy ở đâu đấy !!!!!!!!!!!!!!!!!!!!!!!!!

7 tháng 8 2015

http://olm.vn/hoi-dap/question/160314.html

4 tháng 1 2016

THONG CAM MINH MOI \(y=\frac{1}{x^2+\sqrt{x}}\)7 TUOI