Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(9n+5;2n+1)
Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d
=>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d
=>18n+10\(⋮\)d;18n+9\(⋮\)d
=>[(18n+10)-(18n+9)]\(⋮\)d
=>[18n+10-18n-9]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)
Đề phải là nEN* hoặc n>1
Gọi d là ƯCLN(2n-1;8n-3)
ta có 2n-1\(⋮\)d;8n-3\(⋮\)d
=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d
=>8n-4\(⋮\)d;8n-3\(⋮\)d
=>[(8n-4)-(8n-3)]\(⋮\)d
=>[8n-4-8n+3]\(⋮\)d
=>-1\(⋮\)d
=>d=1
Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)
Gọi d là UCLN(2n-1;8n-3)
=>2n-1 chia hết cho d và 8n-3 chia hết cho d
=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d
=>8n-4 chia hết cho d và 8n-3 chia hết cho d
=>8n-4-8n+3 chia hết cho d
=>-1 chia hết cho d =>d=1
=>điều phải chứng minh
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
Gọi d là ƯCLN(n+3;3n+8)
Ta có n+3\(⋮\)d=>3*(n+3)\(⋮\)d=>3n+9\(⋮\)d
Ta có 3n+8\(⋮\)d
=>[(3n+9)-(3n+8)]\(⋮\)d
=>[3n+9-3n-8]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(n+3;3n+8)=1 nên phân số \(\frac{n+3}{3n+8}\) luôn tối giản(nEN)
Gọi d là ƯCLN(n+3;3n+8)
Ta có:n+3\(⋮\)d
3n+8\(⋮\)d\(\Rightarrow\)3(n+4)\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+2\(⋮\)d
\(\Rightarrow\)[n+3-n-2]\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
Vậy ƯCLN(n+3;3n+8)là 1 nên phân số \(\frac{n+3}{3n+8}\) tối giản(n\(\in\)N)
Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1
Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :
\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)
\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)
\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)
\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)
\(\Leftrightarrow\)\(\left(-1\right)⋮d\)
Suy ra \(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
Do đó \(d\in\left\{1;-1\right\}\)
Vật phân số \(\frac{2n+3}{3n+5}\)tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
=> n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
=> (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d hay 1 chia hết cho d
Do đó (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản (Đ.P.C.M)
tk cho mk nha $_$
Gọi d là ƯCLN(2n+5;n+2)
Ta có 2n+5\(⋮\)d
n+2\(⋮\)d=>2*(n+2)\(⋮\)d=>2n+4\(⋮\)d
=>[(2n+5)-(2n+4)]\(⋮\)d
=>[2n+5-2n-4]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(2n+5;n+2)=1 nên phân số \(\frac{2n+5}{n+2}\) luôn tối giản(nEN)