K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

a) \(\exists x\in Z:x=x^2\)

16 tháng 5 2017

a) \(\exists a\in\mathbb{Z}:a=a^2\)

b) \(\forall x\in\mathbb{R}:x+0=x\)

c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)

d) \(\forall n\in\mathbb{N}:n>0\)

13 tháng 8 2019

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)

NV
10 tháng 9 2020

- Với \(n=0\) thỏa mãn

- Giả sử BĐT đúng với \(n=k\) hay \(2^k\ge k+1\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(2^{k+1}\ge k+2\)

Thật vậy, ta có: \(2^{k+1}=2.2^k\ge2\left(k+1\right)=2k+2\ge k+2\) với mọi k tự nhiên (đpcm)

Tl

Bạn T i k 3 lần cho mình mình trả lời cho

#Kirito

24 tháng 2 2017

a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)

Chia hết cho 10

b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)

\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)

Cái này chia hết cho 5

8 tháng 8 2020

Giả sử n là số lẻ

Khi đó: n2 là số lẻ, trái với giả thiết

Vậy n là số chẵn.

8 tháng 8 2020

Ta có n2 = n.n

mà n2 chẵn 

=> n.n chẵn 

=> n.n \(⋮\)2

=> có ít nhất 1 số chia hết cho 2 

 mà n = n  => n \(⋮\)2 => n chẵn (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:

Điều phải chứng minh tương đương với việc tồn tại vô số số $n$ sao cho \(p|2^n-n\) với mọi \(p\in\mathbb{P}\)

Ta sẽ chỉ là một dạng tổng quát của $n$

------------------------------------------

Vì theo định lý Fermat nhỏ ta \(2^{p-1}\equiv 1\pmod p\)

\(\Leftrightarrow p|2^{p-1}-1\)

Do đó đặt \(n=k(p-1)\)

Khi đó \(2^n-n=2^{k(p-1)}-k(p-1)\equiv 1+ k\pmod p\)

Để \(p|2^n-n\Rightarrow 1+k\equiv 0\pmod p\Leftrightarrow k=pt-1\)

Vậy \(p|2^{(pt-1)(p-1)}-(pt-1)(p-1)\forall p\in \mathbb{P}\)

Nghĩa là tồn tại vô hạn số n có dạng \((pt-1)(p-1)\) với $t$ là số tự nhiên nào đó thỏa mãn điều kiện đề bài.

Ta có đpcm.

9 tháng 5 2016

goij d là UCLN của 5n+1 và 6n+1

ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)

ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)

lấy (1)-(2)

ta có (30n+6)-(30n+5)chia hết cho d

vậy 1 chia hết cho d

nên d=(1;-1)

vậy phân số đã cho tối giản