K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Đề sai! Thử n = 2 là biết!

3 tháng 6 2017

Bn có sai ko? Hay đề là tìm n để Biểu thức \(⋮\) 2

Ta có: \(\left(3n+5\right)\left(2n-10\right)=2\left(n-5\right)\left(3n+5\right)\) \(⋮\) 2

=> Theo đề bài phải c/m: \(\left(6n+1\right)\left(n+5\right)\) \(⋮\) 2 (*)

Xét n là số lẻ => \(\left(6n+1\right)\left(n+5\right)\) là số chẳn => Biểu thức \(⋮\) 2

Xét n là số chẳn => \(\left(6n+1\right)\left(n+5\right)\) là số lẻ => \(⋮̸\) 2

=> Để (6n+1)(n+5)−(3n+5)(2n−10) \(⋮\) 2 thì n là số lẻ, n\(\in Z\)

5 tháng 7 2016

xem lại câu a nhé bạn

10 tháng 8 2018

Ngân ơi, bài ai giao thế ?

10 tháng 8 2018

a,

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)

b,

\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)

17 tháng 10 2018

????? đề j kì zể???

21 tháng 10 2022

a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)

\(=-n^2+5n\)

Cái này nếu n=1 thì ko thỏa mãn nha bạn

b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)

\(=49n+55\)

Nếu n là số lẻ thì 49n+55 chia hết cho 2

Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a) (n2+ 3n 1) (n + 2) n3+ 2

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b) (6n + 1) (n + 5) (3n + 5) (2n 1)

= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5

= 24n + 10

= 2(12n +5) chia hết cho 2

17 tháng 10 2018

Gợi ý là xét tính chẵn lẻ

17 tháng 10 2018

\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)

\(=6n^2+30n+n+5-\left(6n^2-30n+10n-50\right)\)

\(=6n^2+31n+5-6n^2+20n+50\)

\(=51n+55\)

Dễ thấy 51n là một số lẻ; 55 là một số lẻ

Mặt khác tổng của 2 số lẻ là 1 số chẵn

=> 51n + 55 chia hết cho 2

=> đpcm

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)

24 tháng 6 2016

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

18 tháng 5 2017

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

20 tháng 8 2017

n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n

15 tháng 2 2018

Ez nhé

\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)

           \(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)

Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)