K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=>  3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2.3 = 6 
Vậy ta được điều phải chứng minh

28 tháng 8 2017

n2(n+1)+2n(n+1) chia hết cho 6.

Ta có:n2(n+1)+2n(n+1)

          =(n+1) (n2+2n)

          =n+1.n(n+2)

          =n.(n+1)(n+2)

Vì n;(n+1);(n+2) là ba số tự nhiên liên tiếp (với mọi số nguyên n) nên:

     n.(n+1)(n+2) chia hết cho 2 

và n.(n+1)(n+2) chia hết cho 3

      =>n.(n+1)(n+2)chia hết cho(2.3)

hayn.(n+1)(n+2) chia hết cho 6

Vậy n2(n+1)+2n(n+1) chia hết cho 6 với mọi số nguyên n(đpcm)

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

2 tháng 11 2016

A= n2(n+1)+2n(n+1)=(n+1)(n2+2n)=(n+1)n(n+2)

vì A có n(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho2 

A có n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho3

lại có (2;3)=1 nênA chia hết cho 2*3=6

24 tháng 9 2017

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

15 tháng 9 2015

 

 n(n+1)+2n (n+1)

=n.(n+1)(n+2)

vì n;n+1 là 2 số nguyên liên tiếp nên n.(n+1) chia hết cho 2

   n;n+1;n+2 là 3 số tự nhiên liên tiếp nên n.(n+1)(n+2) chia hết cho 3

=>n.(n+1)(n+2) chia hết cho 6

24 tháng 7 2021

a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100

c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)

vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

Mà(2, 3) = 1 

⇒n(n-1)(n-2) chia hết cho 2.3 = 6

24 tháng 7 2021

phần b mik ko giải đc 

8 tháng 7 2015

n2(n+1)+2n(n+1)=n(n+1)(n+2)

n+1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2 

n;n+1 và n+2 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 

=>n2(n+1)+2n(n+1) chia hết cho 2.3=6