Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Trước hết ta sẽ chứng minh BĐT với 2 số
Với x,y,z,t > 0 ta luôn có: \(\frac{x^2}{y}+\frac{z^2}{t}\ge\frac{\left(x+z\right)^2}{y+t}\)
BĐT cần chứng minh tương đương:
\(BĐT\Leftrightarrow\frac{x^2t+z^2y}{yt}\ge\frac{\left(x+z\right)^2}{y+t}\Leftrightarrow\left(x^2t+z^2y\right)\left(y+t\right)\ge yt\left(x+z\right)^2\)
(Biến đổi tương đương)
Khi bất đẳng thức trên đúng ta sẽ CM như sau:
\(\frac{a^2}{\alpha}+\frac{b^2}{\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b\right)^2}{\alpha+\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b+c\right)^2}{\alpha+\beta+\gamma}\)
Dấu "=" xảy ra khi: \(\frac{a}{\alpha}=\frac{b}{\beta}=\frac{c}{\gamma}\)
mình nghĩ đề bài sai một chỗ :\(\frac{a^2}{b^2}\)chứ ko phải là \(\frac{a}{b^2}\)
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được
\(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\)
Ta lại có \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
Do đó ta được \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{a^2+b^2+c^2}{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
p/s: check
Bài làm:
Ta có: \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\)
\(=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)
\(=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)(Cauchy Schwars)
\(=\frac{\left(a+b+c\right)^2}{a+b+c}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Áp dụng bất đẳng thức Bunhiacopxki ta được
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{\left(a+b\right)^2}{2\left(a+b\right)}+\frac{\left(b+c\right)^2}{2\left(b+c\right)}+\frac{\left(c+a\right)^2}{2\left(c+a\right)}\)
\(\ge\frac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\ge\frac{12\left(ab+bc+ca\right)}{4\left(a+b+c\right)}=\frac{3\left(ab+bc+ca\right)}{a+b+c}\)( rút gọn 12/4)
Bất đẳng thức được chứng minh
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
Xét BĐT phụ \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)
Tương tự ta có:
\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)
Cộng lại theo vế ta có:
\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)
\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)
Vậy BĐT đc chứng minh
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{a^4}{b^2+c^2}+\frac{b^4}{c^2+a^2}+\frac{c^4}{a^2+b^2}\right)\left(b^2+c^2+c^2+a^2+a^2+b^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow\frac{a^4}{b^2+c^2}+\frac{b^4}{a^2+c^2}+\frac{c^4}{a^2+b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Ta có đpcm
Dấu bằng xảy ra khi \(\left|a\right|=\left|b\right|=\left|c\right|\)