K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2024

Theo Cosi 

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{a^2.b^2}{b^2.c^2}}=\dfrac{2a}{c};\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{b^2.c^2}{c^2.a^2}}=\dfrac{2b}{a};\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{c^2.a^2}{a^2.b^2}}=\dfrac{2c}{b}\)

Cộng vế với vế 

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\right)\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\)

Dấu ''='' xảy ra khi a = b = c 

NV
25 tháng 3 2022

\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)

\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)

28 tháng 7 2018

\(\dfrac{a^3}{b^3}+\dfrac{a^3}{b^3}+1+\dfrac{b^3}{c^3}+\dfrac{b^3}{c^3}+1+\dfrac{c^3}{a^3}+\dfrac{c^3}{a^3}+1\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow2\left(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\right)\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)-3\)

\(\ge2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)+3-3=2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)

27 tháng 7 2018

giả sử \(a>b>c>0\) thì ta có :

\(\dfrac{a^2}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^2}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\ge2\dfrac{a}{b}+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\)

\(=\dfrac{2a}{b}+\dfrac{c^3}{a^3}-\dfrac{c^2}{a^2}\ge0\)

làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\)\(b>c>a\)

\(\Rightarrow\left(đpcm\right)\)

22 tháng 3 2021

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

22 tháng 3 2021

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

14 tháng 1 2018

Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có: \(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2\sqrt{a^2}=2a\)

Tương tự với các vế ta được: \(\left\{{}\begin{matrix}\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

Cộng theo vế: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

19 tháng 1 2018

Giỏi thế :(

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay

29 tháng 7 2018

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)

\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)

Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)

\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)

Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)

\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)

\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)

\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)

\(\Rightarrow dpcm\)

25 tháng 7 2018

giả sử \(a>b>c>0\) thì ta có :

\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)

\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)

làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\)\(b>c>a\)

\(\Rightarrow\left(đpcm\right)\)

mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(

20 tháng 7 2017

1) Từ \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\), suy ra

\(\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\Rightarrow\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự: \(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+ba-a^2}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+bc-b^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)

20 tháng 7 2017

2) Đặt vế trái đẳng thức cần chứng minh là P

Đặt \(A=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\), ta có:

\(A.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)

\(=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)

Tương tự: \(A.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc},A.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)

Vậy \(P=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

P/S: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)(Cái này tự chứng minh)

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:
Ta có:

Nhân cả hai vế với $a+b+c$ , BĐT cần chứng minh tương đương với:

\(\frac{(a^2+b^2)(a+b+c)}{a+b}+\frac{(b^2+c^2)(a+b+c)}{b+c}+\frac{(c^2+a^2)(a+b+c)}{c+a}\leq 3(a^2+b^2+c^2)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)+\frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq 3(a^2+b^2+c^2)\)

\(\Leftrightarrow \frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq a^2+b^2+c^2\)

\(\Leftrightarrow \frac{c(a+b)^2-2abc}{a+b}+\frac{a(b+c)^2-2abc}{b+c}+\frac{b(a+c)^2-2abc}{a+c}\leq a^2+b^2+c^2\)

\(\Leftrightarrow 2(ab+bc+ac)\leq a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

---------------------------------------------------------------------

Áp dụng BĐT Cauchy- Schwarz:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)

\(\Rightarrow a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

Ta cần chứng minh \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(a+c)\)

(luôn đúng theo BĐT Schur)

Do đó ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

làm sao để có 1 chuỗi các ý tưởng hoàn hảo vậy bn :)) mình nháp hoài rồi mà toàn mắc :v