K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2015

a2+b2+c2=ab+ac+bc

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0 và a-c=0 và b-c=0

<=>a=b=c

28 tháng 8 2017

Ta có :

\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\)(1)

\(\left(b-1\right)^2\ge0\Leftrightarrow b^2-2b+1\ge0\Rightarrow b^2+1\ge2b\)(2)

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)(3)

Cộng các vế tương ứng của (1);(2);(3) lại ta được :

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\ge2a+2b+2ab\)

\(\Leftrightarrow2a^2+2b^2+2\ge2a+2b+2ab\)

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)(đpcm)

8 tháng 4 2018

o biet

29 tháng 4 2018

VC câu hỏi hay: Cauchy-Schwarz: \(N=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)Dấu "=" khi \(a=b=c\)

2 tháng 5 2018

Hung nguyen Khoa học đã chứng minh...

mấy người như a nên đc bảo tồn

5 tháng 12 2016

Mình sẽ chứng minh bằng biến đổi tương đương nhé :)

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)(luôn đúng)

Vì BĐT cuối luôn đúng nên BĐT ban đầu được chứng minh.

14 tháng 3 2016

Áp dụng bất đẳng thức  Bunyakovsky cho  \(2\)  bộ  \(3\)  số thực  \(\left(1+1+1\right)\)  và  \(\left(a+b+c\right)\). Ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

\(\Rightarrow\)  \(a^2+b^2+c^2\ge\frac{\frac{9}{4}}{3}=\frac{3}{4}\)  \(\left(đpcm\right)\)

Dấu   \("="\)   xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{2}\)

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

13 tháng 6 2016

thế còn c ở đâu?

14 tháng 6 2016

cảm ơn bạn nhìu

15 tháng 3 2018

Áp dụng Bất Đẳng Thức Co-si ta có:

\(a^3+b^3+b^3\ge3ab^2\)

\(b^3+c^3+c^3\ge3bc^2\)

\(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế của các Bất Đẳng Thức trên ta được:

\(3\left(a^3+b^3+c^3\right)\ge3\left(ab^2+bc^2+ac^2\right)\)

\(\Leftrightarrow a^3+b^3+c^3\ge ab^2+bc^2+ac^2\)

Dấu đẳng thức xảy ra khi và chỉ khi: \(\hept{\begin{cases}a=b\\b=c\Leftrightarrow a=b=c\\c=a\end{cases}}\)