Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng trong tam giác vuông, bình phương trung tuyến ứng với cạnh góc vuông= bình phương cạnh huyền trừ 3/4 cạnh góc vuông đó có cô loan giải đó
A B C M
ta chứng minh: BM2 = BC2 - 3/4. AC2
Áp dụng ĐL Pi- ta - go trong tam giác vuông ABM ta có: BM2 = AB2 + AM2
Trong tam giác vuông ABC có: AB2 = BC2 - AC2
M là trung điểm của AC nên AM = AC/2
=> BM2 = AB2 + AM2 = BC2 - AC2 + (AC/2)2 = BC2 - AC2 + AC2/ 4 = BC2 - 3/4. AC2 (đpcm)
theo đề ta ta có BM2+AH2+CN2 = 3/2 AC2.
ta có trong tam giác vuông đường trung tuyến cắt cạnh huyền bằng 1/2 cạnh huyền từ đó suy ra BM2=1/2 AC2 (1)
ta có: AH2 = AB2 +BH2 (vì tam giác ABH vuông tại B) = AB2+ (1/2BC)2=AB2+1/4BC2 (do AH là trung tuyến BC) (2)
tương tự ta có CN2= BC2 +BN2=BC2+1/4AB2 (3)
lấy (2)+(3) ta có AB2+1/4BC2+BC2+1/4AB2=5/4 AB2+5/4 BC2 = 5/4 AC2(4)
lấy (1)+(4) đó chính là điều ta cần chứng minh
Cách khác (theo cách lớp 7):
A B C D 2 1
Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)
Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)
+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)
Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)
+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)
Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
kho
12