Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết n+1 số đã cho dưới dạng :
a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1
trong đó b1,b2,...,bn+1 là các số lẻ. Ta có 1≤b1,b2,...,bn+1≤2n−11≤b1,b2,...,bn+1≤2n−1
Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho bp=bqbp=bq
Khi đó apap và aqaq có 1 số là bội của số kia
đúng nhớ k cho mình 1 cái nha chúc bn hok tốt
Giả sử trong 2n số nguyên dương đầu tiên có đúng m số nguyên tố là p1;p2,...;pm.Dễ chứng minh được rằng m⩽n
Chia 2n số nguyên dương đó thành m+1 tập con (có thể giao nhau) :A0;A1;A2;...;Am, trong đó :
A0={1}
Ai (1⩽i⩽m) gồm pi và tất cả các bội của nó trong 2n số nguyên dương đầu tiên.
Xét 2 trường hợp:
+) m < n
Khi đó m + 1 < n + 1⇒ trong n+1 số bất kỳ (chọn trong 2n số đó) chắc chắn có 2 số thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
+) m = n
+ Nếu trong n+1 số đó có số 1 (thuộc tập Ao) thì đpcm là hiển nhiên.
+ Nếu trong n+1 số đó không có số nào thuộc tập A0 thì chúng chỉ nằm trong m tập con còn lại.
Vì m<n+1 nên có ít nhất 2 số (trong n+1 số đó) thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
Như vậy, trong mọi trường hợp, luôn tìm được 2 số là bội của nhau từ n+1 số bất kỳ chọn trong 2n số nguyên dương đầu tiên.
Nguồn: https://diendantoanhoc.net/topic/132810-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-t%E1%BB%AB-n1-s%E1%BB%91-b%E1%BA%A5t-k%C3%AC-trong-2n-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-%C4%91%E1%BA%A7u-ti%C3%AAn-lu%C3%B4n-t%C3%ACm-%C4%91%C6%B0%E1%BB%A3c-hai-s%E1%BB%91-l%C3%A0-b%E1%BB%99i-c/
Mình cx bí bày này nên giải lại cho hiểu kĩ
1. Ta có dãy số: 19;1919;191919;19...19(20 số 19)
Theo nguyên lí Direchlet thì có ít nhất 2 số trong dãy số trên có cùng số dư khi chia cho 13
=>19...19(x chữ số 19) - 19...19(y chữ số 19) chia hết cho 19
=>19...1900...0(x-y chữ số 19 , y chữ số 0) chia hết cho 19
=>19...19.10y(x-y chữ số 19) chia hết cho 19
Vì 10y và 19 nguyên tố cùng nhau
=> 19...19(x-y chữ số 19) chia hết cho 19
=> Tồn tại 1 bội của số 19 mà gồm toàn chữ số 19( đpcm)
2. Ta nhóm 20 số trên thành các cặp có tổng bằng 21:
1+20=21 ; 2+19=21 ; ... ; 10+11=21
Vậy có tất cả 10 cặp
Mà chọn 11 số trong dãy số trên nên tho nguyên lý Direchlet thì chọn 11 số bất kì trong dãy số trên thì có ít nhất hai số có tổng bằng 21(đpcm)
3 số đó có dạng: a;a+1;a+2
Nếu a = 2k
Thì a + a+2 = 2k + 2k + 2 = 2(2k + 1)
Chia hết cho 2
Nếu a = 2k + 1
Thì a + a + 2 = 2k + 1 + 2k + 1 + 2 = 2(2k+2)
Chia hết cho 2
Gọi 3 số tự nhiên bất kì là k ; k+1 ; k+2
ta có 3 trường hợp :
TH1 : k + k + 1 = 2k + 1
\(2k⋮2\); 1 không chia hết cho 2 suy ra 2k+1 không chia hết cho 2
TH2 : k + k + 2 = 2k + 2
2k⋮2 ; 2⋮2 suy ra 2k2 + 2 chia hết cho 2
TH3 : k+1 + k+2 = 2k + 3
2k⋮2 ; 3 không chia hết cho 2 suy ra 2k + 3 không chia hết cho 2
giúp mình với