Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có :
K1 = 2^(a1).3^(b1)
K2 = 2^(a2).3^(b2)
K3 = 2^(a3).3^(b3)
K4 = 2^(a4).3^(b4)
K5 = 2^(a5).3^(b5)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau :
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj)
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Tích của 3 số bất kì đều là số âm => tất cả các số đều là số âm ( Nếu có 2 dương 1 âm => có 3 số duong có tích không là số âm)
=> tích 16 số âm = 1 số dương
dpcm
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn
Tích của 3 số nguyên bất kì là 1 số âm
=> Trong 3 số đó có ít nhất 1 số âm
Tách riêng số âm đó ra ta còn 15 số. Chia 15 số đó thành các nhóm , mỗi nhóm 3 số bất kỳ
=> Ta được 5 nhóm
Do tích của 3 số nguyên bất kỳ là 1 số âm
=> tích của mỗi nhóm là 1 số âm
=> Tích của 5 nhóm là 1 số âm
=> Tích của 5 nhóm và số âm còn lại là 1 số dương
Hay tích 16 số đó là 1 số dương ( đpcm )
_Hok tốt_
Gọi số nguyên tố thứ nhất là : a ; số nguyên tố thứ hai là : b
Ta có : ab = c
Ư(c) = {1;c;a;b}
=> Tích của hai số nguyên tố luôn là hợp số
Gọi hai số nguyên tố bất kì là a và b .
Đặt x = a . b
Vì a và b đều là số nguyên tố nên x có : ( 1 + 1 ) ( 1 + 1 ) = 2 . 2 = 2^2 = 4 ( ước )
4 ước đó chính là x ; a ; b ; 1
Vậy x là hợp số <=> tích hai số nguyên tố luôn là hợp số