Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
Goi 3 so tn lien tiep la a,a+1 va a+2 (a thuoc N)
Ta xet 3 truong hop ;
Suy ra : a chia het cho 3
Th2 : a chia cho 3 du 1
Ta co : a=3q+1
a+2=3q+1+2
a+2=3q+3
a+2=3q+3.1
a+2=3.(q+1)
Suy ra :a+2 chia het cho 3
TH3 :a chia cho 3 du 2
Ta co : a=3q+2
a+1=3q+2+1
a+1=3q+3
a+1=3q+3.1
a+1=3.(q+1)
Suy ra : a+1 chia het cho 3
Vay trong 3 so tn lien tiep cho duy nhat 1 so chia het cho 3
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
Đáp án:
Vì bốn số liên tiếp phải có 1 số chia hết cho 4 nên tích đó chia hết cho 4.
Vd: 1*2*3*4 thì có 4 chia hết cho 4. thử tính: 1*2*3*4=24, 24/4=6 nên chia hết cho 4.
Vd: 7*8*9*10 thì có 8 chia hết cho 4. thử tính: 7*8*9*10=5040, 5040/4=1260 nên chia hết cho 4.
Vd: 27*28*29*30 thì có 28 chia hết cho 4. thử tính: 27*28*29*30=657220, 657220/4=164430 nên chia hết cho 4.
Trong 4 số tự nhiên liên tiếp sẽ có 1 số \(⋮\) 2, 1 số \(⋮\) 3, 1 số \(⋮\) 4.
Mà 2x 3x 4= 24.
=> Tích 4 số tự nhiên liên tiếp \(⋮\) 24.
Gọi 3 số tự nhiên đó là: \(n-1;\)\(n;\)\(n+1\) (\(n\ge1;\)\(n\in N\))
Tích 3 số là: \(A=\left(n-1\right)n\left(n+1\right)\)
Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3
trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2 (1)
trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 3 (2)
(2; 3) = 1 (3)
(1)(2)(3) => tích của 3 số tự nhiên liên tiếp chia hết cho 6