Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cotx-tanx=\frac{cosx}{sinx}-\frac{sinx}{cosx}=\frac{cos^2x-sin^2x}{sinx.cosx}=\frac{cos2x}{\frac{1}{2}sin2x}=2cot2x\)
\(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)^2}=\frac{cosx-sinx}{cosx+sinx}\)
\(=\frac{\frac{cosx}{cosx}-\frac{sinx}{cosx}}{\frac{cosx}{cosx}+\frac{sinx}{cosx}}=\frac{1-tanx}{1+tanx}\)
\(\frac{1-sinx-cos2x}{sin2x-cosx}=\frac{1-sinx-\left(1-2sin^2x\right)}{2sinxcosx-cosx}=\frac{2sin^2x-sinx}{2sinxcosx-cosx}\)
\(=\frac{sinx\left(2sinx-1\right)}{cosx\left(2sinx-1\right)}=\frac{sinx}{cosx}=tanx\)
\(2sin\left(\frac{\pi}{4}+a\right)sin\left(\frac{\pi}{4}-a\right)=cos2a-cos\left(\frac{\pi}{2}\right)=cos2a\)
\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=-\frac{2\left(cos^2x-sin^2x\right)}{2sinx.cosx}=\frac{2cos2x}{sin2x}=-2cot2x=-\frac{2}{tan2x}\)
\(sinx\left(1+cos2x\right)=sinx\left(1+2cos^2x-1\right)=2sinx.cosx.cosx=sin2x.cosx\)
\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=\frac{-cos2x}{\frac{1}{2}sin2x}=-\frac{2}{tan2x}\)
\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}\left(\frac{1+cosx}{cosx}\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}.\frac{2cos^2\frac{x}{2}}{cosx}=\frac{2sin\frac{x}{2}.cos\frac{x}{2}}{cosx}=\frac{sinx}{cosx}=tanx\)
\(\left(\frac{1}{cos2x}+1\right)tanx=\left(\frac{cos2x+1}{cos2x}\right).\frac{sinx}{cosx}=\frac{2cos^2x}{cos2x}.\frac{sinx}{cosx}\)
\(=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)
\(\frac{cos7a+cosa+cos5a+cos3a}{sin7a+sina+sin5a+sin3a}=\frac{2cos4a.cos3a+2cos4a.cosa}{2sin4a.cos3a+2sin4a.cosa}\)
\(=\frac{cos4a\left(2cos3a+2cosa\right)}{sin4a\left(2cos3a+2cosa\right)}=\frac{cos4a}{sin4a}=cot4a\)
\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=\frac{2sin2x.cos2x-sin2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(2cos2x-1\right)}{cos2x\left(2cos2x-1\right)}=\frac{sin2x}{cos2x}=tan2x\)
\(\Rightarrow\) đề sai
b/
\(\frac{1-cos4x}{sin4x}=\frac{1-\left(1-2sin^22x\right)}{2sin2x.cos2x}=\frac{2sin^22x}{2sin2x.cos2x}=\frac{sin2x}{cos2x}=tan2x\)
Đề sai tiếp lần 2
3/
\(\frac{sin2x-sinx}{1-cosx+cos2x}=\frac{2sinxcosx-sinx}{1-cosx+2cos^2x-1}=\frac{sinx\left(2cosx-1\right)}{cosx\left(2cosx-1\right)}=\frac{sinx}{cosx}=tanx\)
4/
\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\left(\frac{sinx+\frac{1}{tanx}}{1+sinxtanx}\right)^{2014}=\left(\frac{sinxtanx+1}{tanx\left(sinxtanx+1\right)}\right)^{2014}\)
\(=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)
\(\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}=\frac{sin^{2014}x+\frac{1}{tan^{2014}x}}{1+\left(sinx.tanx\right)^{2014}}=\frac{\left(sinxtanx\right)^{2014}+1}{tan^{2014}x\left[\left(sinxtanx\right)^{2014}+1\right]}\)
\(=\frac{1}{tan^{2014}x}=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)
\(\Rightarrow\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}\)
\(\frac{\left(1+tanx\right)^2-2tan^2x}{1+tan^2x}=\frac{1+2tanx-tan^2x}{1+tan^2x}=\frac{cos^2x\left(1+2tanx-tan^2x\right)}{cos^2x\left(1+tan^2x\right)}\)
\(=\frac{cos^2x+2sinx.cosx-sin^2x}{cos^2x+sin^2x}=\frac{cos^2x-sin^2x+2sinx.cosx}{1}\)
\(=cos2x+sin2x\)
Nhân cả tử và mẫu vế trái với \(cos2x.cosx\) ta được:
\(\frac{sin2x.sinx}{sin2x.cosx-cos2x.sinx}=\frac{sin2x.sinx}{sin\left(2x-x\right)}=\frac{sin2x.sinx}{sinx}=sin2x\)