K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

\(A=\left(n+1\right)^4+n^4+n^1=\left(n^2+2n+1\right)^2-n^2+\left(n^4+n^2+\right)1\)

\(=\left(n^2+3n+1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)

\(=\left(n^2+n+1\right)\left(2n^2+2n+2\right)=2\left(n^2+n+1\right)^2\)

\(\Rightarrowđpcm\)

P/s: mình không chắc...

8 tháng 6 2015

A = (n+1)4+n4+1=(n2+2n+1)2-n2+(n4+n2+1)

    =(n2+3n+1)(n2+n+1)+(n2+n+1)(n2-n+1)

    =(n2+n+1)(2n2+2n+2)=2.(n2+n+1)2

=> đpcm

\(A=\left(n+1\right)^4+n^4+1=\left[\left(n^2+2n+1\right)^2-n^2\right]+\left[\left(n^4+2n^2+1\right)-n^2\right]\)

\(=\left(n^2+3n+1\right)\left(n^2+n+1\right)+\left[\left(n^2+1\right)^2-n^2\right]\)

\(=\left(n^2+3n+1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)

\(=\left(n^2+n+1\right)\left(n^2+3n+1+n^2-n+1\right)\)

\(=\left(n^2+n+1\right)\left(2n^2+2n+1\right)=2.\left(n^2+n+1\right)^2⋮\left(n^2+n+1\right)^2\)

\(\Rightarrow A⋮\left(n^2+n+1\right)^2\) => đpcm

1 tháng 8 2016
  • Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

  • Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

  • Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^

21 tháng 1 2018

Đề phải cho n thuộc N sao nha bạn 

Có :

A = n^4+4n^3+6n^2+4n+1+n^4+1

   = 2n^4+4n^3+6n^2+4n+2

=> A/2 = n^4+2n^3+3n^2+2n+1

= (n^4+2n^3+n^2)+(2n^2+2n)+1

= (n^2+n)^2+2.(n^2+n).1+1 = (n^2+n+1)^2

=> A chia hết cho (n^2+n+1)^2

Mà n thuộc N sao nên n^2+n+1 > 1

=> ĐPCM

Tk mk nha

21 tháng 1 2018

\(A=n^4+4n^3+6n^2+4n+1+n^4+1\)

\(A=2n^4+4n^3+6n^2+4n+2\)

\(A=2\left(n^4+2n^3+3n^2+2n+1\right)\)

\(A=2\left(n^2+n+1\right)^2⋮\left(n^2+n+1\right)^2\)(là số chính phương) (đpcm)
(Áp dụng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\))

15 tháng 10 2019

Hình như là đề bài thiếu rồi ạ. Nếu chỉ cho đk như vậy thì sao tìm đc n ạ???

15 tháng 10 2019

Dạ .. Sửa đề rồi nhé :33

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath