Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai
b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)
\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)
Lời giải:
Biến đổi:
\(A=3^{n+1}-2^{n+1}+3^{n-1}-2^{n-1}\)
\(=3^{n-1}(3^2+1)-2^{n-1}(2^2+1)\)
\(=10.3^{n-1}-5.2^{n-1}\)
Ta thấy \(10.3^{n-1}\vdots 10\)
Với mọi \(n\in\mathbb{N}>1\Rightarrow 2^{n-1}\vdots 2\Rightarrow 5.2^{n-1}\vdots 10\)
Do đó \(10.3^{n-1}-5.2^{n-1}\vdots 10\Leftrightarrow A\vdots 10\)
Ta có đpcm.
có \(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)=\(3^n.27-2.3^n+2^n.32-7.2^n\)=\(3^n\left(27-2\right)+2^n\left(32-7\right)\)
=\(25\left(3^n+2^n\right)⋮25\)
3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n
= 3n . ( 33 - 2 ) + 2n . ( 25 - 7 )
= 3n . 25 + 2n . 25
= 25. ( 3n + 2n )
Vì 25 \(⋮\)25
Nên 25. ( 3n + 2n ) \(⋮\)25
Vậy 3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n \(⋮\) 25
học tốt nhé bạn ^^
ta có :
\(3^{2^n}=\left(3^4\right)^{\frac{2^n}{4}}=\left(81\right)^{2^{n-2}}\) có chữ số tận cùng là 1 nên
\(3^{2^n}+4\) có chữ số tận cùng là 5, nên chia hết cho 5