Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3 + 5n
= n^3 - n + 6n
= n(n^2 - 1) + 6n
= n(n - 1)(n + 1) + 6n
(n-1)n(n+1) là tích của 3 stn liên tiếp
=> n(n-1)(n+1) chia hết cho 2 và 3 mà (2;3) = 1
=> n(n-1)(n+1) chia hết cho 6
có 6n chia hết cho 6
=> n(n-1)(n+1) + 6n chia hết cho 6
=> n^3 + 5n chia hết cho 6 với mọi n thuộc N
Giả sử A=4n3 - 6n2 + 3n + 37 chia hết cho 125 với mọi n là số tự nhiên .
-> 4n3 - 6n2 + 3n + 37 chia hết cho 5
-> 2(4n3 - 6n2 + 3n + 37) chia hết cho 5
-> (2n-1)3 +75 chia hết cho 5
-> (2n-1)3 chia hết cho 5 -> 2n-1 chia hết cho 5 -> (2n-1)3 chia hết cho 125 nhưng 75 không chia hết cho 125 -> 2A không chia hết cho 125 -> A không chia hết cho 125 (trái giả thiết)
-> đpcm
3n+3 + 2n+3 + 3n+1 + 2n+1
= ( 3n+3 + 3n+1 ) + ( 2n+3 +2n+2 )
= 3n( 33 + 3 ) + 2n ( 23 + 22 )
= 3n(27 + 3) + 2n(8 + 4)
= 3n.30 + 2n.12
= 6( 3n.5 + 2n.2) chia hết cho 6 ( đpcm )
hello minh anh ak
bitch