Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a\in Z\)
Ta có:\(P=4a^2+4a\)
\(\Leftrightarrow P=4a\left(a+1\right)\)
Vì \(\hept{\begin{cases}4⋮4\\\left[a\left(a+1\right)\right]⋮2\end{cases}}\)
Nên: \(P⋮8\)
Vậy với\(a\in Z\) thì \(P=\left(4a^2+4a\right)⋮8\) (đpcm)
P = 4a2 + 4a = 4(a + a2)
Bây giờ chỉ còn CM a + a2 chia hết cho 2
a + a2 = a(a+ 1) chia hết cho 2
=> ĐPCM
4a2+3ab-11b2 chia hết cho 5 \(\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)\) chia hết cho 5
a2 + 2ab + b2 chia hết cho 5
( a + b )2 chia hết cho 5
a + b chia hết cho 5 (vì 5 là số nguyên tố)
a4 - b4 = a2 + b2 (a + b) (a - b) chia hết cho 5
4a2+3ab-11b2 chia hết cho 5
\(\left(4a^2+3ab-11b^2\right)⋮5\)
\(\Leftrightarrow5\left(a^2+ab-2b^2\right)-\left(4a^2+3ab-11b^2\right)⋮5\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)⋮5\)
\(\Leftrightarrow a+b⋮5\)
\(\Rightarrow a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)⋮5\)
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
4a2 + 4a
= 4(a2 + a)
= 4a(a + 1)
Ta thấy a(a + 1) là tích 2 số liên tiếp nên chia hết cho 2
=> đặt a(a + 1) = 2k
Ta có:
4.2k = 8k chia hết cho 8 (ĐPCM)