Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x-5=x-10+15>x-10\)
2) \(x+3=x-2+5>x-2\)
3) \(x+5< x+5+3=x+8\)
\(\Rightarrowđpcm\)
đạt được tận hơn 26 điểm thi
2 ae mik vào a1 rồi
chú nguyên chụp cho tuấn và chú bảo vào a1 rồi
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
nhớ tách câu ra nha lộn xà ngầu hết lên
1. x+7>x+5
2. x-3<x+7
3. x+10>x+7
1. \(x+7=x+5+2>x+5\)
2. \(x-3=x+7-10< x+7\)
3. \(x+10=x+7+3>x+7\)
\(\Rightarrow\) đpcm
a): Ta có:
x2 - 6x +10
= x2 - 3x -3x + 10
=x(x-3) -3x +9 +1
= x(x-3) - 3(x-3) + 1
=(x-3)(x-3) + 1
= (x-3)2 +1
Vì (x-3)2 lớn hơn hoặc bằng 0 với mọi x\(\in\) R nên:
(x-3)2 +1 lớn hơn hoặc bằng 1 với mọi x thuộc R
=> (x-3)2 +1 > 0 với mọi x
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!
rất khó nhưng vì bạn cần giúp nên mới làm đấy:
1. vì x-10>x-5 nên x-5<x-10
2. vì x < 2x nên x + 3 > x - 2
3. vì y = x nên x + 5 < x +8
_Em mới lớp 7 nên chị không biết có giúp em được theo kiểu giải bất phương trình của lớp 8 hay không?