K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2023

∆ = [-2(m + 2)]² - 4(m + 1)

= 4m² + 16m + 16 - 4m - 4

= 4m² + 12m + 12

= 4m² + 12m + 9 + 3

= (2m + 3)² + 3 > 0 với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m

11 tháng 5 2020

a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)

nên phương trình ( 1 ) luôn có hai nghiệm phân biệt

b) PT ( 1 ) có hai nghiệm trái dấu

\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)

\(x^2-\left(m+1\right)+m=0\left(1\right)\)

Ta có \(\Delta=b^2-4ac=[-\left(m+1\right)]^2-4m\)

\(=m^2+2m+1-4m=m^2-2m+1\)

\(=\left(m-1\right)^2\ge0\)

Để phương trình 1 luôn có 2 nghiệm phân biệt \(\Delta>0\Rightarrow m-1\ne0\Rightarrow m\ne1\)

Vậy \(m\ne1\) thì phương trình 1 luôn có 2 nghiệm phân biệt.

Ta có: \(\Delta=\left(-m-1\right)^2-4\cdot1\cdot m\)

\(=m^2+2m+1-4m\)

\(=m^2-2m+1\)

\(=\left(m-1\right)^2\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m-1\ne0\)

hay \(m\ne1\)

6 tháng 4 2016

tính denlta ra thôi,,sau đô cm nó > 0 với mọi m

17 tháng 5 2017

a = 1, b = -2(m +1), c = 2m -2 

          b' = -(m + 1)

\(\Delta'=b'^2-ac =\left(m+1\right)^2-\left(2m-2\right)=m^2+2m+1-2m+2=m^2+3\)

\(\forall x\)ta có : \(m^2\ge0\Leftrightarrow m^2+3>0\Leftrightarrow\Delta'>0\)\(\forall x\)=> pt luôn có hai nghiệm phân biệt với mọi x

       

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

NV
21 tháng 3 2022

a. Với \(m=-5\) pt trở thành:

\(x^2+8x-9=0\)

\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)

b. Ta có:

\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1