K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

3 tháng 10 2016

\(2n^3+3n^2+n\)

\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)

\(=2n^2\left(n+1\right)+n\left(n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

n chia 3 có thể dư 1 ; 2 hoặc không dư.

Nếu không dư, tích chắc chắn chia hết cho 3

Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3

Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3

Do đó tích trên luôn chia hết cho 2 và 3

Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6

Vậy ...

3 tháng 10 2016

2n3+3n2+n=(2n3+2n2)+(n2+n)=2n2(n+1)+n(n+1)=n(n+1)(2n+1)n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2.n chia 3 có thể dư 1 ; 2 hoặc không dư.Nếu không dư, tích chắc chắn chia hết cho 3Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3Do đó tích trên luôn chia hết cho 2 và 3Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6Vậy ... 

3 tháng 10 2016

TA CÓ : 

n^3 + 3n^2 + 2n = n( n^2 + 3n + 2) = n( n+1) (n+2). 
Mà n(n+1)(n+2) là một số chia hết cho 2 và 3, nên nó chia hết cho 6.

5 tháng 4 2016

A = 2n + 3n2 + n = n ( 2n2 + 3n + 1)

= n ( n+1) (2n+1 )

= n(n+1)[(n+2)+(n-1)]

=n(n+1)(n+2) + n(n+1)(n-1)

Vì mỗi số hạnh là tích 3 số nguyên liên tiếp => tồn tại ít nhất 1 số là B(2) và B(3) mà (2;3)=1=> mỗi số hạng đều chia hết cho 3.2=6

=> A chia hết cho 6

=> ĐPCM

k cho mk nka

5 tháng 4 2016

Có 2n3+3n2+n = 2n3+2n2+n2+n = 2n2(n+1)+n(n+1) = n(n+1)(2n+1)

Vì n và n+1 là 2 số nguyên liên tiếp => 1 trong 2 số là số chẵn => n(n+1) chia hết cho 2 (1)

Xét n= 3k, 3k+1, 3k+2 với k thuộc Z ta cũng đều ra chia hết cho 3 (2)

Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 6 => ĐPCM

19 tháng 10 2019

Ta có :

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)

Với mọi số nguyên n ta có :

+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )

+) \(12n⋮6\)

\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)

\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)

5 tháng 8 2019

\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)

\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)

\(A=5n^2+5n\)

\(A=5n\left(n+1\right)\)

\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)

\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)

\(\Rightarrow5n\left(n+1\right)⋮2\)(2)

\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)

\(\text{Vậy A⋮10}\)

6 tháng 11 2019

Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link trên nhé!

25 tháng 1 2019

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)

\(=3n^3+9n^2+15n+9\)

\(=3n^2\left(n+1\right)+6n\left(n+1\right)+9\left(n+1\right)\)

\(=3\left(n+1\right)\left(n^2+2n+3\right)\)

\(=3\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Do \(n,n+1,n+2\) là 3 số tự nhiên liên tiếp

\(\Rightarrow3n\left(n+1\right)\left(n+2\right)⋮9\)

\(\Rightarrow A=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)⋮9\left(đpcm\right)\)

P/s : Bài này bạn có thể sử dụng phương pháp quy nạp

làm như vậy sẽ nhanh hơn

Ta có : \(n^4+2n^3-n^2-2n\)

\(=n^3\left(n+2\right)-n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3-n\right)\)

\(=n\left(n^2-1\right)\left(n+2\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Do : \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 4 số nguyên liên tiếp nên chia hết cho 24 .

Vậy \(n^4+2n^3-n^2-2n\) chia hết cho 24 ( đpcm )

1 tháng 8 2018

Ta có:

\(n^4+2n^3-n^2-2n\)

\(=n^3\left(n+2\right)-n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3-n\right)\)

\(=\left(n+2\right)n\left(n^2-1\right)\)

\(=\left(n+2\right)n\left(n+1\right)\left(n-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)

\(\Rightarrow n^4+2n^3-n^2-2n⋮24\)

19 tháng 4 2020

a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4

b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6

15 tháng 8 2021

abcdefjhijklmnopqrstuvwxyz

16 tháng 7 2015

     n^2.(n+1) + 2n.(n+1)

=(n+1). (n^2 + 2n)

= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)

16 tháng 7 2015

n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.

=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.

Mà (2,3) = 1

=> n(n + 1)(n + 2) chia hết cho 6

=> n2.(n+1)+2n.(n+1) chia hết cho 6