K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

https://olm.vn/hoi-dap/question/994793.html

Hôm qua mih giải bài này rồi 

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

30 tháng 10 2020

1)

a) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

\(3n-3⋮n-1\forall n\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

mà n∈N

nên \(n\in\left\{0;2;6\right\}\)

Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)

\(n\left(n+2\right)⋮n+2\)

hay \(7⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(7\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)

mà n∈N

nên n=5

Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)

2)

a) Ta có: \(2^{4n+2}+1\)

\(=2^{2\left(2n+1\right)}+1\)

\(=4^{2n+1}+1\)

\(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)

nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N

hay \(2^{4n+2}+1⋮5\forall n\in N\)

31 tháng 10 2020

em cảm ơn cj nhiều lắm

21 tháng 10 2017

\(CM:a=5^{n+2}+5^{n+1}+5^n⋮31\)
\(a=5^{n+2}+5^{n+1}+5^n\)
=> \(a=5^n.5^2+5^n.5+5^n\)
=> \(a=5^n\left(5^2+5+1\right)\)
=> \(a=5^n.31\)
\(31⋮31\)=> \(5^n.31⋮31\)
=> \(a⋮31\)(\(đpcm\))



21 tháng 10 2017

a = 5\(^{n+2}\) + 5\(^{n+1}\)+5\(^n\)

= 5\(^n\) .5\(^2\) + 5\(^n\).5 + 5\(^n\)

= 5\(^n\) ( 5\(^2\) +5+1)

= 5\(^n\)(25+5+1) = 5\(^n\) .31 \(⋮\) 31