Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n\left(n+1\right)\left(2n+1\right)\)
Nhận thấy \(n\left(n+1\right)\)là tích của 2 số nguyên liên tiếp nên \(n\left(n+1\right)\)chia hết cho 2
=> A chia hết cho 2
Nếu \(n=3k\)thì A \(⋮\)\(3\)
Nếu \(n=3k+1\)thì: \(2n+1=2\left(3k+1\right)+1=6k+3\)\(⋮\)\(3\)=> \(A\)\(⋮\)\(3\)
Nếu \(n=3k+2\)thì \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)=> \(A\)\(⋮\)\(3\)
vậy với mọi n nguyên ta đều có A chia hết cho 3
mà \(\left(2;3\right)=1\)
nên A chia hết cho 6
n^3-n +2=n^2.n-n+2=n(n^2-1)+2=n(n+1)(n-1)+2
Vì n;n+1;n+2 là 3 số tự nhiên liên tiếp => có ít nhất 1 số trong 3 số trên chia hết cho 2 và 1 số chia hết cho 3
=> n(n+1)(n-1) chia hết cho 2 và 3 mà ƯCLN(2;3)=1
=> n(n+1)(n-1) chia hết cho 6 ( chia hết cho 2.3)
mà 2 không chia hết cho 6 => n(n+1)(n-1)+2 không chia hết cho 6
Vậy: với mọi số tự nhiên n thì n^3-n+2 không chia hết cho 6(đpcm)
ỦNG HỘ MIK NHÉ !
Gọi d=ƯCLN(n2+n-1 ; n2+n+1)
=> \(n^2+n-1⋮d\)
\(n^2+n+1⋮d\)
=> \(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)
=> \(2⋮d\)
Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ
=> \(d\ne2\)
=> d=1
Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản
Gọi d=ƯCLN(n2+n-1 ; n2+n+1)
=> n^2+n-1⋮d
n^2+n+1⋮d
=> (n2+n+1)−(n2+n−1)⋮d
=> 2⋮d
Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ
=> d khác 2
=> d=1
Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Câu 1:
Ta thấy:
n;(n+1);(n+2);(n+3);(n+4) là 5 số tự nhiên liên tiếp.
suy ra :sẽ có 1 số chia hết cho 5
suy ra : n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với n ∈ N
Câu 2 :
+ Gọi các ước của số tự nhiên n lần lượt là : d1;d2;d3;...;d54(với d1;d2;d3;...;d54 ∈ N* và d1 ≠ d2 ≠ d3 ≠... ≠d54.)
Ta có :
n =d1.d54 =d2.d53 =d3.d52 =... =d27.d28
⇒(d1.d54).(d2.d53).(d3.d52). ... .(d27.d28)
= n.n.n.n. ... . n(27 số n)
⇒ d1.d2.d3.d4. ... .d53 =n27
⇒ Tích các ước của n = n27
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)