K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

23 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

1 tháng 7 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương

=> ĐPCM

24 tháng 5 2015

ta có A = (x+y)(x+2y)(x+3y)(x+4y)+y4 

           =(x2+5xy+4y2 )(x2+5xy+6y2)+y4 

đặt x2 +5xy+5y2 =t (t thuộc Z) thi 

A= (t -y2 )(t+y2)+y4 =t2 -y4+y4 =t2=(x2 +5xy+5y2)2

24 tháng 5 2015

tôi coi tôi tự trả lời mới là tôi đúng 

12 tháng 3 2020

3xy+x+3y=4

⇒x(3y+1)+3y+1=5

⇒x(3y+1)+(3y+1)=5

⇒(3y+1)(x+1)=5

⇒x+1; 3y+1 ∈ ƯU(5)={±1;±5}

Mà 3y+1 là ước chia 3 dư 1 ⇒ 3y+1 ∈ {1,-5}

Lập bảng:

3xy+11-5
y0-2
x+15-1
x4-2

Vậy (x;y)=(-2;-2); (4;0)

4 tháng 2 2024

1.2x.2y=2×+y=25

=>x+y=5

2.(32x)y=32xy

274=(33)4=33.4=312

=>2xy=12

=>x.y=6

 

Đặt x - y = t

\(x=y+t\)

\(x^2=\left(y+t\right)^2=\left(y+t\right)\left(y+t\right)=y^2+2yt+t^2\)

Thay vào ta có :

\(y+t+2019 \left(y^2+2yt+t^2\right)=2020y^2+y\)

\(t+4038yt+2019t^2=y^2\)

\(t+2019.2020t^2=\left(y-2019t\right)^2\)

\(t\left(1+2019.2020t\right)=\left(y-2019t\right)^2\)

\(\Rightarrow\)t là số chính phương do t và 1 + 2019.2020t là hai số nguyên tố cùng nhau.