Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n=2
=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}\)
\(\Rightarrow x_1-x_2=\frac{1}{x_1}-\frac{1}{x_2}\)
\(\Rightarrow\left(x_1-x_2\right)-\frac{x_1-x_2}{x_1x_2}=0\)
\(\Rightarrow\left(x_1-x_2\right)\left(1-\frac{1}{x_1x_2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x_1-x_2=0\\1-\frac{1}{x_1x_2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x_1=x_2\\x_1x_2=1\end{cases}}}\)
*) n=k
=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=...=x_k+\frac{1}{x_k}\)
thì \(x_1=x_2=x_3=...=x_k\)hoặc \(\left|x_1x_2...x_k\right|=0\)
Với n=k+1
=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=x_3+\frac{1}{x_3}=...x_{k+1}+\frac{1}{x_1}\)
=> \(x_1+\frac{1}{x_2}=x_2+\frac{1}{x_3}=....=x_k+\frac{1}{x_{k+1}}=x_{k+1}+\frac{1}{x_1}\)
\(\Rightarrow x_{k-1}+\frac{1}{x_k}=x_k+\frac{1}{x_1}=x_{k+1}+\frac{1}{x_1}\)
\(\Rightarrow x_k-x_{k+1}=0\)
\(\Rightarrow x_k=x_{k+1}\)
\(\Rightarrow x_1=x_2=...=x_k=x_{k+1}\)
x1=a; x2=b
a)
(a+1)^2>=4a^2=(2a)^2
<=>(a+1-2a)(a+1+2a)>=0
<=>(1-a)(3a+1)>=0
a€[0;1]
3a+1>0
1-a>=0
=>dpcm
Phương trình đã cho có nghiệm khi và chỉ khi \(\hept{\begin{cases}m\ne0\\\Delta\ge0\end{cases}}\)
Xét \(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\)
Suy ra phương trình đã cho có 2 nghiệm \(x_1;x_2\)với mọi m khác 0
Theo hệ thức Viet , ta có : \(x_1+x_2=\frac{m+2}{m}\left(1\right);x_1x_2=\frac{2}{m}\)(2)
Ta có \(P=\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{\left(x_1^2+x_2^2\right)+x_1+x_2}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2+\left(x_1+x_2\right)}{x_1x_2}-2\)(3)
Từ (1) , (2) và (3) suy ra \(P=\frac{m^2+m+2}{m}\)với m khác 0
nhìn nó dài nhưng chỉ cần lập luận vài bước thui
Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)
Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và \(x_2\)cùng dấu.
Tương tự ta cũng có:
Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu
.....................................................
Từ (1999) suy ra \(x_{1999}\)và \(x_{2000}\)cùng dấu
Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu
Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .
Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).
Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)
\(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)
...............................................................................................
Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)
Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)
Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:
\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)
Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)
Tóm lại hệ đã cho có 2 nghiệm :
\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)