Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Bạn vào phần Câu hỏi tương tự ý. Có nhiều bn có câu hỏi giống lắm.
-Học tốt-
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
ta có a+b/a-b=c+d/c-d
suy ra (a+b)(c-d)=(a-b)(c+d)
ac-ad+bc-bd=ac+ad-bc-bd
ac-ac+bc+bc-bd+bd=ad+ad
2bc=2ad
nen bc=ad=a/b=c/d
vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d
a) \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d ) = c . ( a + b )
=> ac + ad = ac + cb
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Đề sai rồi nha bạn : .... thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) ( sửa lại )
Bài làm
Ta có \(a^2=bc=\frac{a}{c}=\frac{b}{a}\)
áp dụng dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
hok tốt .
Ta có: a2 = bc
=> a.a = b.c
=> \(\frac{a}{c}=\frac{b}{a}\)=> \(\frac{a+b}{c+a}\)= \(\frac{a-b}{c-a}\)
Hình như bn ghi sai đề
Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)
ta có \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
=>\(\left(a+b\right)\left(a+d\right)=\left(c+d\right)\left(b+c\right)\)
=> \(a^2+ab+ad+bd=c^2+bc+bd+cd\)
=>\(a^2+ab+ad-bc-c^2-cd=0\)
=>\(\left(a^2-c^2\right)+\left(ab-cd\right)+\left(ab-ac\right)=0\)
=>\(\left(a-c\right)\left(a+c\right)+d\left(a-c\right)+b\left(a-c\right)=0\)
=>\(\left(a-c\right)\left(a+b+c+d\right)=0\)
=>\(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}\left(dpcm\right)}\)
hacker 2k6
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Leftrightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
\(\Leftrightarrow a\left(a+d\right)+b\left(a+d\right)=c\left(b+c\right)+d\left(b+c\right)\)
\(\Leftrightarrow a^2+ad+ab+bd=bc+c^2+bd+cd\)
\(\Leftrightarrow a^2+ad+ab=bc+c^2+cd\)
\(\Leftrightarrow a^2-c^2=bc+cd-ad-ab\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=b\left(c-a\right)+d\left(c-a\right)\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d+b\right)\left(c-a\right)\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)+\left(d+b\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left(a+b+c+d\right)=0\)
Mà \(a+b+c+d\ne0\)nên \(a-c=0\Leftrightarrow a=c\left(đpcm\right)\)